Почему при стравливании кислорода из баллона баллон охлаждается – Устройство кислородного баллона. Вентиль на кислородный баллон. Техника безопасности при работе с кислородным баллоном.

Содержание

Почему газовый баллон покрывается инеем?

Существует немало заблуждений относительно эксплуатации газовых баллонов. Многие из них приводят к неправильной эксплуатации и несчастным случаям. Один из таких мифов касается образования инея в нижней части сосуда. Принято считать, что баллон «замерзает» при низкой температуре, и поэтому образуется наледь. Некоторые пользователи стараются даже утеплять емкость старыми одеялами, пальто и другими подручными средствами.

Откуда появляется наледь

Действительно, иногда после доставки газового баллона с холодной улицы, его нижняя часть покрывается инеем. Но он растает гораздо быстрее, если ничем не укутывать емкость, а просто оставить ее в тепле на некоторое время. Это явление достаточно просто объясняется рядом физических явлений, которые происходят внутри сосуда при подключении потребителя. Во время активного расхода газа сжиженная среда быстро испаряется. Процесс парообразования сопровождается поглощением большого количества тепла. Как следствие, нижняя часть баллона, в которой остается сжиженный газ, быстро охлаждается и становится холоднее, чем окружающая среда.

Опять же по законам физики на холодной поверхности начинает оседать влага из более теплого воздуха. На баллоне появляется конденсат, который при дальнейшем охлаждении превращается в иней. Это естественные процессы, с которыми совершенно не нужно бороться. Кроме того, все попытки самостоятельно утеплить сосуд – это прямое нарушение требований безопасной эксплуатации. Одеяла и прочие оболочки нарушают нормальный теплообмен емкости с окружающей средой и влияют на характеристики содержимого. Например, если в горелке и раньше не наблюдалось интенсивного пламени, то после укутывания холодного баллона она может вовсе не гореть.

Что делать, если баллон замерз

В первую очередь, ничем его не укутывать и запастись терпением. Емкость требует определенное время на отдачу, которое в холодное время года может увеличиваться вдвое. В любом случае, если в нижней части баллона появился иней, это может свидетельствовать о слишком большой нагрузке на сосуд. Такое явление чревато падением давления на выходе. Необходимо занести емкость в отапливаемое помещение и выждать некоторое время, пока внутри образуется достаточная паровая шапка. После этого иней растает самостоятельно, и баллон можно будет без опасений подключить к потребителю.

ballonis.ru

Взрывы кислородных баллонов, причины взрывов, от масла

При неправильной эксплуатации или транспортировки могут произойти взрывы кислородных баллонов, которые приведут к печальным последствиям. Нередко случаются и человеческие жертвы, а силу разрушения взрыва газового баллона можно сравнить с взрывом от тротила.

Различные причины взрывов кислородных баллонов

Причин для взрыва кислородного баллона может быть несколько:

  • Одна из основных причин – высокая активность кислорода, как окислителя. Множество горючих материалов и веществ при контакте с кислородом становятся взрывоопасными и могут привести к пожару.
  • Опасность взрыва кислорода возникает от давления, повышения температуры, скорости истечения и доли кислорода в объеме воздуха.
  • Загрязненные металлические детали кислородного баллона маслом или другими смазочными жидкостями, которые находятся в контакте с кислородом, могут стать причиной возгорания или привести к взрыву.
  • Материалы, выполненные из резины или каучука, которые уплотняют выход из баллона, тоже могут вспыхнуть в кислороде с высоким давлением.
  • Работа с кислородным баллоном металлическими ключами может привести к искрообразованию.

Из-за чего происходит взрыв кислородного баллона?

Как правило, все взрывы кислородных баллонов происходят из-за грубейшего нарушения техники безопасности, и очень жаль, но с человеческими жертвами. Работники, выполняющие работы с кислородными баллонами, не знают, как правильно и безопасно это делать. Для того чтобы обезопасить собственное предприятие от взрыва кислородного баллона, который имеет страшную разрушительную силу, необходимо иметь помещение для работы с газовым оборудованием, соответствующее всем параметрам безопасности. Проводить первичные и последующие инструктажи, рассказывая и напоминая работникам все правила работы с жидким кислородом, с баллонами и с прилагаемым оборудованием, а также иметь специальные приспособления для транспортировки газовых баллонов. Однако кроме человеческого фактора, возгорание и взрыв кислородного баллона может произойти из-за смешения смазочных веществ с жидким газом.

Сильный взрыв кислородного баллона от масла

Самый сильный взрыв, и как следствие пожар, происходит из-за контакта жидкого кислорода с маслами. При их контакте образуются перекисные взрывоопасные соединения, которые могут детонировать и взорваться от нагревания баллона, его трения, удара или сотрясения. Опасность образования такого вещества увеличивается при высокой концентрации в воздухе кислорода. Особенно опасно соединение масел с кислородом под сильным давлением или его жидким вариантом. Возгорание и взрыв могут возникнуть и при заправке баллона, когда в него случайно попадает масло. Часто возникают взрывы кислородных баллонов при открытии вентиля на кислородном баллоне рукавицами, испачканными маслом. Поэтому в местах хранения кислорода обязательно должна висеть надпись «маслоопасно».

Фотографии в этой статье отображают последствия взрыва кислородного баллона 18.01.2010 года в 7й городской больнице города Луганск. Фото взяты с официального сайта луганского городского головы луганского городского совета и его исполнительных органов.

Похожие статьи

Как правильно хранить газовые баллоны в доме: общие критерии, запреты, закон, нормативы СНиП, уголовная ответственность Читать далее Автономное снабжение газом в загородном доме: газовое хранилище, плюсы и минусы Читать далее Шкаф для хранения газовых баллонов: где можно купить, примерная цена, сделать своими руками Читать далее Утилизация газовых баллонов: как сдать в металлолом Читать далее

Похожие статьи

Как правильно хранить газовые баллоны в доме: общие критерии, запреты, закон, нормативы СНиП, уголовная ответственность Читать далее Автономное снабжение газом в загородном доме: газовое хранилище, плюсы и минусы Читать далее Шкаф для хранения газовых баллонов: где можно купить, примерная цена, сделать своими руками Читать далее Утилизация газовых баллонов: как сдать в металлолом Читать далее

ballony.com.ua

Кислород не такой безопасный, как кажется

Кислород не оказывает вредного влияния на окружающую среду. Является не токсичным, не взрывоопасным и не горючим, но поддерживающим горение газом. На первый взгляд он кажется полностью безопасным, но необходимо помнить, что кислород - сильный окислитель, который увеличивает способность материалов к горению и его активность возрастает с ростом давления и температуры.

В чистом кислороде горение происходит гораздо интенсивнее, чем в воздухе, и чем выше давление, тем быстрее горение. Негорючие или трудно поддающиеся возгоранию, в обычных условиях, материалы моментально загораются в атмосфере чистого кислорода

Например: при контакте с маслами, жирами, горючими пластмассами, угольной пылью, ворсинками органических веществ и т.п. чистый кислород способен окислять их с большими скоростями, в результате чего они самовоспламеняются или взрываются. И в дальнейшем может послужить причиной пожара.

Источником воспламенения может служить теплота, выделяющаяся при быстром сжатии кислорода (поскольку реакция носит экзотермический характер и протекает с выделением большого количества теплоты), трение или удар твердых частиц о металл, а также электростатический искровой разряд в струе кислорода и другие явлениями. Имели место случаи взрыва наполненного баллона в результате резкого удара о металлические предметы при низкой температуре.

По этой причине цилиндры кислородного компрессора смазывают дистиллированной водой, в которую добавляют 10% глицерина. Кроме того, поршневые кольца компрессоров для накачивания кислорода изготавливают из графита или другого антифрикционного материала работающего без смазки и не загрязняющего кислород органическими примесями.

Если в кислороде присутствует избыток влаги, внутренняя стенка баллона начинает подвергаться коррозии. В результате образуются рыхлые массы гидратов оксида железа (Fe(OH), Fe(OH)2, Fe(OH)3) в которые свободно проникает кислород, что содействует распространению коррозии вглубь стенки.

Если баллоны наполнены сухим кислородом, то происходит очень медленное окисление железа в тонком поверхностном слое. В результате образующиеся окислы покрывают стенку сплошной пленкой препятствующей дальнейшему процессу окисления. Практика показывает, что при отсутствии влаги в баллоне даже после 20 лет эксплуатации не наблюдается заметной коррозии металла на внутренней стенке.

В процессе газовой сварки или газовой резки в конце опорожнения баллона из-за низкого давления кислорода возможно перетекание горючего газа (ацетилена, пропана, метана) находящегося в баллоне под более высоким давлением, что приводит к образованию взрывоопасной смеси взрывающейся при обратном ударе. Поэтому при наполнении баллоны очень тщательно проверяют на наличие в них посторонних газов.

Горючие газы и пары образуют с кислородом смеси, обладающие весьма широкими пределами взрываемости при воспламенении. Взрывная волна распространяется в таких смесях с очень большой скоростью (3000 м/с и выше), когда взрыв сопровождается детонацией.

Различные пористые органические вещества, такие, как угольная мелочь и пыль, сажа, торф, шерсть, ткани из хлопка и шерсти и т. п. будучи пропитаны жидким кислородом, образуют так называемые оксиликвиты, при воспламенении которых вследствие детонации происходит сильный взрыв.

В кислороде могут загораться и углеродистые стали при достаточном количестве тепла в месте соприкосновения и незначительной массе металла (например, при трении тонких пластин о массивные детали машин, наличии частиц окалины, стружки или железного порошка).

Для предотвращения возможности возникновения пожара необходимо строго следить, чтобы объемная доля кислорода в рабочих помещениях не превышала 23%.

Несмотря на то, что человеку жизненно необходим кислород, но при длительном вдыхании чистого кислорода происходит поражение органов дыхания и легких с возможным последующим летальным исходом.

В статье Кислород – рождающий кислоты мы писали о том, что жидкий кислород имеет низкую температуру, поэтому при попадании на кожу или в глаза он вызываем моментальное обморожение.

Симптомы у человека при недостатке кислорода в воздухе

Нормальное содержание кислорода в воздухе находится в пределах 21%. При понижении количества кислорода в результате сгорания или вымещения инертными газами (аргон, гелий) возникает недостаток кислорода, последствия, и симптомы которого указаны в таблице ниже.

Содержание кислорода (% по объему)

Последствия и симптомы (при атмосферном давлении)

15-19%

Снижение работоспособности. Может произойти нарушение координации. Первые симптомы могут проявиться у людей с нарушением коронарного кровообращения, общего кровообращения или работы легких

12-14%

Затруднение дыхания, учащение пульса, нарушение координации и восприятия.

10-12%

Еще более глубокое и учащенное дыхание, потеря здравомыслия, посинение губ. При нахождении в атмосфере, содержащем 12% и менее кислорода, потеря сознания происходит внезапно и так быстро, что у человека не остается времени на то, чтобы предпринять какие-то меры.

8-10%

Нарушение мыслительной деятельности, обморок, потеря сознания, мертвенно-бледное лицо, синие губы, рвота.

6-8%

8 мин - 100% летальный исход; 6 мин - 50%; 4-5 мин - возможно спасение жизни с медицинской помощью.

4-6%.

Через 40 секунд - кома, конвульсии, прекращение дыхания, смерть.

При наличии вышеуказанных симптомов пострадавшего следует быстро вынести на свежий воздух и дать ему подышать кислородом или сделать искусственное дыхание. Необходима немедленная медицинская помощь. Ингаляция насыщенного кислородом воздуха должна проводиться под наблюдением врача.

Правила безопасности при использовании, хранении и транспортировке кислорода

  • Необходимо внимательно следить за тем, чтобы кислород не находился в контакте с горючими легковоспламеняющимися веществами.
  • Следить за тем, чтобы не было утечка кислорода в воздух, поскольку даже при незначительном увеличении количества кислорода в воздухе может произойти самовозгорание горючих материалов или волос на теле, одежде и т.п.
  • Все лица, в том числе и сварщики, работающие с кислородом никогда не должны надевать рабочую одежду, на которых присутствуют следы смазки или масла.
  • Запрещено применение кислорода вместо воздуха для запуска дизельного двигателя.
  • Запрещено использование кислорода с целью удаления пыли с рабочей одежды. При случайном попадание избыточного объема кислорода на одежду потребуется много времени для его выветривания, вплоть до нескольких часов.
  • Запрещено применение кислорода для освежения воздуха.
  • Вся кислородная аппаратура, кислородопроводы и баллоны необходимо тщательно обезжиривать. В процессе эксплуатации исключить возможность попадания и накопления масел и жиров на поверхности деталей, работающих в контакте с кислородом.
  • Оборудование, работающее в непосредственном контакте с кислородом не должно содержать пыль и металлические частицы во избежание самовозгорания.
  • Перед проведением ремонтных работ или освидетельствованием трубопроводов, баллонов, стационарных и передвижных реципиентов или другого оборудования, используемого для хранения и транспортирования газообразного кислорода, необходимо продуть все внутренние объемы воздухом. Разрешается начинать работы только после снижения объемной доли кислорода во внутренних объемах оборудования до 23%.
  • Запрещается баллоны, автореципиенты и трубопроводы, предназначенные для транспортирования кислорода, использовать для хранения и транспортирования других газов, а также производить какие-либо операции, которые могут загрязнить их внутреннюю поверхность.
  • При погрузке, разгрузке, транспортировании и хранении баллонов должны применяться меры, предотвращающие их падение, удары друг о друга, повреждение и загрязнение баллонов маслом. Баллоны должны быть защищены от атмосферных осадков и нагрева солнечными лучами и другими источниками теплоты.

Все вышеуказанные свойства и особенности кислорода нужно иметь в виду при его использовании, хранении и транспортировке.

weldering.com

Давление в баллоне с кислородом: хранение и транспортировка

Давление кислородного баллона важный показатель. В этой статье рассказывается, как рассчитать количество кислорода. Какое давление оставляют в баллоне после использования.

Кислород – газ не имеющий цвет, вкус и запах. Проявляется в светло — голубым цветом когда температура опускается до -183 гр. С. Замерзает при температуре -218,8 гр.С. Плотность 1,43 кг./м3. Активно поддерживает процесс горения, поэтому используется для резки металла.

Получают кислород из воздуха очищая от примесей воздушную смесь. После сжатия и охлаждения, воздух делится на азот и кислород. Азот закипает быстрее кислорода. Нагревая медленно газы, азот испаряется, кислород остается в емкости.

Транспортируется в металлических баллонах синего цвета с надписью «КИСЛОРОД», наносится краской черного цвета. Давление в баллоне с кислородом измеряется манометром и составляет 150 – 200 кгс/см2 или 14,7 – 19,6 МПа. Кислородное давление регулируется ГОСТом 5583-78.

В сварочных работах применяют технический кислород. Он делится на 2 сорта по ГОСТ 5583-78.
1 сорт содержит – 99,8% О2
2 сорт содержит – 99,5% О2.

Чтобы определить количество кислорода в баллоне применяют формулу
Vk = VbPk,
Vk — объем кислорода в баллоне, измеряется в литрах;
Vb — водная часть баллона, измеряется в литрах;
Рk — давление кислорода в баллоне, измеряется в кгс/см2.
Исходя из полученных результатов, в полном баллоне количество кислорода равно: 40*150=6000 л, что равно 6 м3, давление 760 мм.рт.ст.

Давление в кислородном баллоне меняется с изменением температуры.
T -40C — 120 кгс/см2
T -20C — 130 кгс/см2
T -0C — 140 кгс/см2
T +20C — 150 кгс/см2 = стандартный показатель.
T +40C — 160 кгс/см2
Благоприятная температура хранения кислорода +20 гр.С.

Как устроен баллон для кислорода

Кислородный баллон – металлическая емкость цилиндрической формы голубого цвета. Изготавливается бесшовным методом из стали толщиной 6-8 мм, предназначен для хранения кислорода в газообразном состоянии.

Составляющие кислородного баллона:

  1. Основание.
  2. Башмак удерживает баллон в вертикальном положении.
  3. Латунный вентиль. Вкручивается в баллон.
  4. Колпак безопасности. Устанавливается поверх вентиля. Защищает от попадания взрывоопасных веществ.
  5. Табличка из стали она же паспорт баллона, содержит информацию о баллоне: дата заправки и Т.О., завод — изготовитель и др.

Кислородные баллоны для производственных нужд выпускают в двух объемах – 40 и 50 литров. Давление в 40 л кислородном баллоне 150 payday loans gallatin tn кгс/см2, в 50 л баллоне 200 кгс/см2. Средний вес 40 л баллона – 67 кг, 50 л – 105 кг.

Масса заправленного баллона зависит от газового давления.

Как правильно хранить и транспортировать кислородные баллоны

На производствах, баллоны хранятся в помещениях из негорючих материалов. Помещение оборудовано водяным или паровым отоплением. Склады кислородных баллонов освещаются электрическим светом. Складские помещения с кислородными баллонами располагаются на удалении от производственных помещений.

Для перемещения баллонов используют баллонные тележки или носилки. Внутри помещения кантуют вручную.

Внимание!

Запрещается носить баллоны на руках или на плечах. Категорически запрещается соприкосновение кислорода с маслом или другими жировыми субстанциями – взрывоопасно.

Как транспортируют кислород на дальние расстояния

Кислородные баллоны перевозятся на рессорных машинах с оборудованным грузовым отсеком. Баллоны укладываются горизонтально в металлические ячейки. Для уплотнения ячеек используют войлок. Укладывая баллоны, следят за тем, чтобы вентили находились с одной стороны. В financial assistance grants жаркую погоду баллоны с кислородом укрывают брезентом.

Выполняя сварочные работы, запрещается подносить открытый огонь менее чем на 5 метров. Замерший вентиль нельзя греть огнем. Замерзший вентиль отогревается горячей водой или паром. Выполняя сварочные работы, баллон устанавливается вертикально или под наклоном, чтобы вентиль находился выше дна емкости.

Колпак откручивается вручную или ключом. Отвинтив колпак, осматривается вентиль на предмет повреждений.

Запрещается:

  • откручивать вентиль резкими ударами;
  • пользоваться поврежденным баллоном;
  • открывать вентиль с жировыми пятнами;
  • использовать баллон с просроченным сроком испытания.

Перед началом использования вентиль продувают. Для продувки кратковременно открывают вентиль. После этого, присоединяют редуктор. Вентиль плавно откручивается. Резкое открытие чревато воспламенением газа.

Как рассчитать расходуемый кислород

Работая с кислородом, манометром контролируют, какое давление остается в кислородном баллоне. Баллоны не опустошают в ноль. В емкости остается кислород с давлением cash advance businesses 0,5 кгс/см2. По газовым остаткам, заправочная станция определяет, каким газом был наполнен баллон. Зная эту информацию, не придется промывать баллон перед заправкой.

После опустошения баллона до 0,5-1 кгс/см2, подписывают мелом «ПУСТОЙ». Надевают заглушку и колпак, отправляют на завод для планового осмотра или заправки.

Внимание!

Пользуясь кислородными баллонами, соблюдайте технику безопасности.

Похожие статьи

Утилизация газовых баллонов: как сдать в металлолом Читать далее Остаточное давление в баллоне: с аргоном и углекислотой Читать далее Кислородный баллон для сварки: сколько стоит, технические характеристики, объем, размеры, заправка Читать далее Виды и объёмы газовых баллонов. Вместимость кислородного баллона Читать далее

ballony.com.ua

Cайт КаменскТехГаз - Безопасность при обращении с жидкими криогенными продуктами

Меры пожарной безопасности при эксплуатации кислородных баллонов

Иногда происходят вспышки и загорания в вентилях кислородных баллонов и в запорных вентилях наполнительных рамп. Загорания вентилей кислородных баллонов чаще всего происходили в момент их закрытия или при подтяжке сальниковой гайки под давлением для устранения появившейся утечки, а также при использовании вместо фибровых прокладок других материалов (кожи, плохо обезжиренного паронита; в запорном клапане - эбонита и резины). В ряде случаев загорание вентилей баллонов происходило вследствие наматывания пеньки между маховичком и сальниковой гайкой для устранения утечки. Загорание рамповых вентилей обычно происходило при их открытии или закрытии. К возможным причинам загорания относят: неудовлетворительное обезжиривание вентилей перед сборкой или загрязнение при сборке, использование в качестве сальниковой набивки горючих материалов (резины и пропарафиненного асбестового шнура). Известны случаи загорания вентилей баллонов, обусловленные попаданием масла на маховик вентиля и его протеканием по штоку в область уплотнительной прокладки. Загорание вентилей наблюдалось при использовании фибры в качестве прокладочного материала. Причиной этого могло быть применение загрязненной маслом фибры. Кроме того, при нерегулярной замене фибровых прокладок они изнашиваются и на их поверхности появляются мелкие волокна и ворсинки, для зажигания которых необходимо небольшое количество тепла. Следует иметь в виду, что загоранию прокладки в вентиле иногда предшествует характерный треск, появляющийся при проворачивании шпинделя вентиля. При отсутствии в вентиле стальных деталей обычно сгорает только прокладка. Стальные детали (шпиндель, клапан), если они есть, при воспламенении прокладки часто выгорают. Поэтому правилами запрещается использовать в баллонных и рамповых вентилях детали из нержавеющей стали. При загорании необходимо возможно быстрее перекрыть доступ кислорода к загоревшемуся вентилю, снизить давление на рампе до атмосферного, после чего принять меры к тушению огня. Не менее опасно при работе с кислородными баллонами использование грязных рукавиц: имеющиеся загрязнения, легко воспламеняясь в среде кислорода, вытекающего из неплотного вентиля баллона, приводят в возгоранию рукавиц и сильным ожогам.


Особенности обращения с жидким кислородом


Особую опасность при контакте с жидким кислородом представляют вещества, например дерево, асфальт, которые пропитываются им и образуют так называемые оксиликвиты, по своим взрывным свойствам близкие к наиболее сильным взрывчатым веществам.

Опасно также соприкосновение жидкого кислорода с маслом, жирами, тканями. Все оборудование, предназначенное для работы с жидким кислородом, должно быть обезжирено и соответственно обработано для удаления остатков растворителя. При хранении и использовании инструмента и оборудования, предназначенных для работы с жидким кислородом, следует обеспечить их чистоту.

В помещениях, где проводятся работы с жидким кислородом, должны быть вывешены плакаты "Осторожно, кислород!".

Ремонт аппаратов, сосудов, приборов и коммуникаций, в которых находился жидкий кислород, можно проводить только после их отогрева до положительных температур и удаления из них газообразного кислорода продувкой воздухом.

Оборудование, предназначенное для работы с жидким кислородом, категорически запрещается использовать для работы с другими криогенными продуктами, так как при этом оно может быть загрязнено.

В помещениях, где проводят работы с жидким кислородом, категорически запрещается курить, зажигать спички, пользоваться открытым огнем и электронагревателями с открытой спиралью. В этих помещениях должны быть вывешены специальные плакаты.

Одежду, в которой проводили работы с жидким кислородом, следует хранить в шкафах в специальных отделениях, изолированно от загрязненной спецодежды. Одежда должна висеть свободно. Если она была облита жидким кислородом, необходимо заменить ее другой, а пропитанную кислородом одежду надо проветрить в течение не менее чем 30 мин.

При работе с жидким кислородом неоднократно происходили взрывы, обусловленные взрывоопасностью большинства органических веществ в жидком кислороде, а также тем, что многие из них (асфальт, дерево, хлопчатобумажные ткани, опилки) пропитываются жидким кислородом, образуя взрывчатые вещества (оксиликвиты). Например, известно несколько взрывов с весьма тяжелыми последствиями, происшедших в результате проливов на асфальт жидкого кислорода во время его переливания из одного резервуара в другой. Во время одного из них взрыв был инициирован падением молотка на асфальт, пропитанный жидким кислородом. К взрывам большой силы приводили проливы жидкого кислорода на деревянные шпалы железнодорожных путей. Один из них был вызван трещиной в паяном соединении трубки, предназначенной для отбора жидкого кислорода на анализ. В результате во время стоянки железнодорожной емкости жидкий кислород капал на шпалы достаточно длительное время и после начала движения состава произошел сильный взрыв, повредивший участок железнодорожного пути и вагон, расположенный после кислородной цистерны. Также было повреждено остекление домов, расположенных в районе железнодорожного пути. Поэтому совершенно недопустимо переливать жидкий кислород или производить работы с ним в помещениях или на площадках, имеющих асфальтовое покрытие. Шпалы на путях, где производятся сливно-наполнительные работы с жидким кислородом, должны быть железобетонные. Наличие на промышленных площадках, а иногда и в помещениях, резервуаров с жидкими криогенными продуктами создает предпосылки для возникновения серьезных аварий в результате разливов жидких криогенных продуктов или их выпуска на грунт. В мировой практике известен ряд случаев с разливом жидкого кислорода, сопровождающихся очень тяжелыми последствиями. Например, на одном из химических предприятий жидкий кислород, ввиду отсутствия потребителей, в значительных количествах сливали на грунт. Постепенно, пропитав грунт, он проник до слоев битумной гидроизоляции, взрыв которой привел к значительным разрушениям. Мероприятия по предотвращению подобных аварий следует всегда прорабатывать при проектировании производств разделения воздуха. Особенности обращения с жидким кислородом должны учитываться при обращении с жидким воздухом и первичным криптоновым концентратом.



Жидкие криогенные продукты (жидкие кислород, азот и аргон) имеют очень низкую температуру кипения (при атмосферном давлении около 90 К и ниже), что обуславливает основные опасности при их применении. Во-первых, это физиологическая опасность при работе на криогенном оборудовании и с жидкими и газообразными криогенными продуктами (возможность обмораживания). Человеческое тело в основном состоит из воды. При низких температурах вода замерзает и образующийся лед повреждает и разрушает биологические ткани. Поэтому, когда поверхность тела соприкасается с криогенными жидкостями и газами, находящимися при криогенных температурах, а также с охлажденными поверхностями (особенно металлическими), происходят так называемые "холодные ожоги". Поражение тела очень напоминает ожог, степень которого зависит от времени контакта с охлажденными предметами или криогенными жидкостями и ряда других факторов. Недостаточно защищенные части тела при соприкосновении с неизолированными поверхностями, охлажденными до криогенных температур, могут быстро к ним примерзнуть, а при отдергивании возможно значительное повреждение кожного покрова. Весьма опасна работа с криогенными продуктами во влажных одежде или рукавицах, так как это может привести к обмораживанию. Особую чувствительность к низким температурам имеют слизистые оболочки глаз, носа, полости рта и гортани. Поэтому очень опасно вдыхание холодного воздуха, что может привести к серьезным заболеваниям легких. Первый признак обмораживания — потеря чувствительности, сопровождающаяся обычно изменением цвета обмороженных участков тела до восковидного и бледно-желтого. После оттаивания обмороженное место становится очень болезненным, на коже появляются пузыри, весьма подверженные инфекции.

Работа при криогенных температурах требует особого внимания к конструкционным материалам, так как в таких условиях у многих из них существенно изменяются физико-механические свойства. Для широко применяемых конструкционных материалов при понижении температуры такие характеристики, как временное сопротивление, предел текучести, предел усталости, как правило, повышаются, но понижаются показатели пластичности и, что самое важное, ударная вязкость. В результате у многих металлических материалов при низких температурах появляется склонность к хрупкому разрушению (разрушению без заметной макропластической деформации, явление хладо-ломкости). К таким материалам относятся углеродистые и низколегированные стали. При этом ударная вязкость понижается настолько, что применение стали этой группы при температурах ниже 230 К недопустимо.

Криогенные жидкости хранятся и транспортируются в специальных сосудах с качественной теплоизоляцией (порошково-вакуумной или экранно-вакуумной). О том, для какого криогенного продукта предназначен сосуд, свидетельствуют окраска сосуда и надпись на нем. При необходимости их применения для другого криогенного продукта выполняются специальные, оговоренные в технической документации изготовителя мероприятия, включающие, например, при переходе с азота на кислород обезжиривание внутренних полостей и испарителя.

Учитывая, что при хранении жидких криогенных продуктов в сосудах происходит их постоянное испарение, надо принимать меры, исключающие возможность возрастания давления в сосуде. С этой целью сосуды должны быть оснащены предохранительными клапанами или предохранительными мембранами. При их отсутствии выход газа из сосуда должен быть постоянно открыт.

Недопустимо быстрое нагревание жидких криогенных продуктов в сосудах с узкой горловиной. Работать с жидкими криогенными продуктами следует очень осторожно, не допуская их разбрызгивания и вскипания. Персонал, проводящий такие работы, должен быть одет в чистую спецодежду, в которой отсутствуют наружные карманы, иметь очки и рукавицы, брюки должны быть одеты поверх обуви. Попадание случайных предметов в ванны и сосуды с жидкими криогенными продуктами должно быть полностью исключено. Заполнять сосуды жидким криогенным продуктом следует осторожно, не допуская интенсивного вскипания жидкости. Особенно это относится к сосудам с открытой горловиной, так как при их быстром заполнении возможно выбрасывание жидкости в помещение. Количество жидкого криогенного продукта, заливаемого в резервуар, не должно превышать для жидкого кислорода 1,08, а для жидкого азота 0,77 кг/дм3 вместимости.

Переливание жидких криогенных продуктов из одного резервуара в другой и заполнение их из транспортных резервуаров должно производиться на бетонных площадках. Производить сливоналивные операции с криопродуктами на площадках, покрытых асфальтом, категорически запрещено ввиду того, что система асфальт - жидкий кислород (или жидкость, обогащенная кислородом) взрывоопасна и имеет очень малую энергию зажигания.

При переливании жидких криогенных продуктов в сосуды небольшой емкости или сосуды Дьюара следует пользоваться специальными воронками. Верхняя часть воронки должна быть частично закрыта для уменьшения разбрызгивания жидкости. При переливании жидких криогенных продуктов металлические шланги следует применять для какой-либо одного жидкого криогенного продукта. Применение шлангов для одного, а затем для другого жидкого криогенного продукта не допускается. Шланги, которые не используют, должны быть закрыты заглушками для предотвращения их загрязнения и проникновения воды. Состояние шлангов следует регулярно проверять. По окончании переливания жидкий криогенный продукт должен быть полностью удален из шлангов во избежание их разрыва в случае герметичного закрытия с обоих концов.

При эксплуатации сосудов и резервуаров с жидкими криогенными продуктами необходимо постоянно обращать внимание на состояние трубопроводов и устройств, по которым из них отводится образующийся пар. Известны неоднократные случаи, когда в результате вымораживания атмосферной влаги и образования льда на внутренних поверхностях горловин сосудов Дьюара и внутри сбросных трубопроводов давление в сосудах повышалось до опасных значений.

Отбор проб жидких криогенных продуктов на анализ следует осуществлять в предварительно охлажденные сосуды. Заполнять сосуды надо медленно, не допуская выбрасывания жидкостей из горловины. Жидкие криогенные продукты имеют температуру 77-90К (196— 183 °С). В связи с этим обращаться с ними следует осторожно. Попав на кожу, они быстро растекаются на поверхности и вызывают сильное охлаждение, что может привести к обмораживанию. Особенно опасно попадание капель сжиженных газов в глаза, что приводит к серьезным травмам. Кратковременное воздействие капель жидкого криогенного продукта на кожу не вызывает ее повреждения ввиду очень малой теплоемкости сжиженных газов. Однако опасность обмораживания существенно возрастает при попадании капель жидкого криогенного продукта за воротник одежды или внутрь обуви. При работе с жидким криогенным продуктом необходимо защищать глаза лицевым щитком или защитными очками, имеющими боковые щитки. Верхняя одежда должна быть наглухо закрыта, а брюки должны закрывать обувь. Опасно прикосновение руками к предметам и стенкам сосудов, охлажденных криогенными жидкостям. В связи с этим операции по заливанию, переливанию и переносу жидких криогенных продуктов следует производить в асбестовых, кожаных или брезентовых рукавицах, которые следует надевать на руку свободно, чтобы при необходимости их можно было легко сбросить. При попадании жидких криогенных продуктов на незащищенный участок тела его следует немедленно обмыть водой.

В помещениях, где ведутся работы с жидкими криогенными продуктами, должна быть организована хорошая вентиляция и контроль за содержанием кислорода в воздухе помещения. Следует иметь в виду, что кислород и аргон при комнатной температуре значительно тяжелее воздуха. Поэтому при утечках в помещение содержание этих газов в приямках и траншеях могут быть значительно выше содержаний в помещении. Этим обуславливается необходимость контроля содержания кислорода в приямках и траншеях перед доступом туда людей для выполнения каких-либо работ. После окончания работ с жидкими криогенными продуктами или перерыве в работах на значительное время сосуды с жидкими крио-продуктами из помещения необходимо удалить, а из открытых ванн и сосудов криопродукты следует слить. Если по каким-либо причинам сосуды с криопродуктами были оставлены в закрытом помещении, вход в него персонала может быть допущен только после контроля содержания кислорода в помещении. Категорически запрещается выливать жидкие криогенные продукты на пол помещений ввиду того, что испарение их приводит к значительному загрязнению атмосферы помещения, а также к охлаждению перекрытий, что может привести к разрушению последних. Слив в помещении жидкого кислорода может привести к пожару или взрыву. Неиспользованные жидкие криогенные продукты необходимо сливать в специальные испарители или резервуары. Слив их на грунт неоднократно приводил к сильным взрывам, так как криогенные жидкости постепенно пропитывают грунт и могут проникать на значительную глубину, достигая находящиеся там горючие предметы. В помещениях, где проводят работы с жидкими криогенными продуктами, должны быть обеспечены необходимая вентиляция и регулярный контроль за содержанием кислорода в воздухе. Проведение каких-либо работ запрещается, если содержание кислорода в воздухе более 23 или менее 19 %.

Жидкие криогенные продукты относятся к опасным грузам. Классификация их по степеням опасности согласно ГОСТ 19433-81 "Грузы опасные" и особенности их транспортировки изложены в Правилах перевозки автомобильным транспортом инертных газов и кислорода сжатых и жидких.

ktgaz.ucoz.ru

Взрыв - кислородный баллон - Большая Энциклопедия Нефти и Газа, статья, страница 2

Взрыв - кислородный баллон

Cтраница 2

Известно много случаев взрыва кислородных баллонов и сосудов с жидким хлором, в которые попали горючие вещества. Поэтому даже незначительные загрязнения этих баллонов горючими газами представляют большую опасность. Такая опасность возникает при ошибочном использовании например пустых кислородных баллонов ( в отсутствие давления газа внутри) для ведения автогенных работ. В результате горючий газ ( ацетилен, пропан, бутан и др.), имея более высокое давление, через автогенную горелку может проникать в кислородный баллон. Отмечены случаи, когда при работе баллоны полностью освобождались от кислорода.  [16]

Наиболее частой причиной взрывов кислородных баллонов является попадание масла в выходное отверстие его вентиля.  [17]

Известно много случаев взрыва кислородных баллонов и сосудов с жидким хлором, в которые попали горючие вещества. Поэтому даже незначительные загрязнения этих баллонов горючими газами представляют большую опасность. Такая опасность возникает при ошибочном использовании например пустых кислородных баллонов ( в отсутствие давления газа внутри) для ведения автогенных работ. В результате горючий газ ( ацетилен, пропан, бутан и др.), имея более высокое давление, через автогенную горелку может проникать в кислородный баллон. Отмечены случаи, когда при работе баллоны полностью освобождались от кислорода.  [18]

Нарушения правил эксплуатации баллонов могут быть причиной взрывов кислородных баллонов, что в свою очередь приводит к несчастным случаям и разрушениям в помещениях.  [19]

Проверяют, не осталось ли на баллонах масляных тряпок, так как загрязнение маслом баллона может привести к взрыву кислородного баллона.  [20]

В качестве горючего газа применяли пропанобутановую смесь, которая поступала из баллона, кислород поступал из кислородного баллона. Взрыв кислородного баллона произошел через 1 5 - 2 мин после зажжения резака. Было установлено, что кислородный баллон был разрушен в результате быстрого горения или детонации в нем смеси кислорода с горючим веществом, которое было внесено в баллон до его заполнения кислородом.  [21]

Резкое открытие вентилей баллонов может привести к динамическому разрушению элементов заправочных систем или к воспламенению в кислородных системах. Для предотвращения взрыва кислородных баллонов необходимо пользоваться только обезжиренным инструментом иработатьвперчатках.  [22]

Происходящие иногда взрывы баллонов с кислородом обусловлены случайным попаданием в них горючих жидкостей или газов, причем количество этих горючих веществ, которые могут привести к взрыву баллона, должно быть не таким уж малым. Было подсчитано, что взрыв кислородного баллона вследствие сгорания внутри него какого-либо органического вещества может произойти, если количество этого вещества составит 300 - 360 г. Такое количество горючего вещества не может оказаться в баллоне случайно, а может попасть туда только из-за грубейших нарушений правил эксплуатации, главным образом при использовании баллонов не по назначению.  [23]

Установка кислородного баллона в контейнер вызвана тем, что при эксплуатации баллон должен стоять вертикально, при горизонтальном размещении баллона влага, имеющаяся в кислороде, перейдет к горловине и закупорит выход кислорода. Кроме того, при взрыве кислородного баллона, стоящего горизонтально, вся сила взрыва будет направлена горизонтально в сторону работающих, а при вертикальной установке баллона - весь взрыв уйдет вверх, что безопаснее.  [25]

Очень опасно загрязнение кислородных баллонов горючими газами. Оценочные расчеты показывают, что для взрыва кислородного баллона достаточно небольшого его загрязнения горючими газами.  [26]

Рабочим положением кислородных и ацетиленовых баллонов является вертикальное положение, так как при горизонтальном положении баллона влага, имеющаяся в кислороде, переместится к горловине и закупорит выход кислорода. Кроме того, при горизонтальном положении во время взрыва кислородного баллона вся сила взрыва будет направлена горизонтально в сторону работающих, а при вертикальном положении сила взрыва будет направлена вверх, что безопаснее.  [27]

Очень опасным является загрязнение кислородных баллонов горючими газами. Выполненные в работе [98] оценочные расчеты показывают, что для взрыва кислородного баллона достаточно небольшого его загрязнения горючими газами.  [28]

Обращение с баллонами со сжатым кислородом, находящимся под высоким давлением, должно быть внимательным и осторожным. На практике зафиксированы, хотя и весьма редкие, случаи взрыва кислородных баллонов.  [29]

Обращение с баллонами со сжатым кислородом, находящимся под высоким давлением, должно быть осторожным. На практике зафиксированы, хотя и весьма редкие, случаи взрыва кислородных баллонов.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Анализ причин взрывов кислородных баллонов 2

30.04.2013

Анализ причин взрывов кислородных баллонов. Журнал «ТЕХНИЧЕСКИЕ ГАЗЫ» 4/2004

 Автор: Чижиченко Вадим Петрович    

1. ВВЕДЕНИЕ

 Взрывы кислородных баллонов, происходящие на различных предприятиях, свидетельствуют о том, что вопросам их безопасной эксплуатации не уделяется достаточного внимания. Положение усугубляется еще и тем, что в последние годы появилось значительное количество небольших предприятий, которые занимаются заправкой кислородных баллонов, используя газификационные установки типа СГУ и приобретая для этих целей на крупных воздухоразделительных станциях жидкий кислород. Делая, в общем, нужное дело, на этих предприятиях почти не обращают внимания на соблюдение требований охраны труда.

 2. ПРИЧИНЫ ВЗРЫВОВ КИСЛОРОДНЫХ БАЛЛОНОВ

 Главная опасность при работе с кислородом — его высокая химическая активность как окислителя. Большинство горючих веществ и материалов в контакте с кислородом становятся взрыво- и пожароопасными. Опасность возрастает с повышением температуры, давления, скорости истечения и объемной доли кислорода в воздухе. Смеси газообразного кислорода с горючими газами также взрывоопасны. Смазочные вещества и жировые загрязнения поверхностей, контактирующих с кислородом, являются причиной возгорания или, при определенной толщине слоя, причиной взрыва. Скорости горения материалов в кислороде в десятки раз выше, чем в воздушной среде. Конструкционные и уплотнительные неметаллические материалы (фибра, капрон, поликарбонат, резины на основе натуральных каучуков и др.) при появлении источника возгорания (искра, трение и т. п.) могут легко воспламеняться в кислороде высокого давления.

При обследовании кислородонаполнительных станций, а также организаций и предприятий, транспортирующих, снабжающих и использующих кислород, контролирующие органы выявляют самые разнообразные нарушения нормативных актов об охране труда при подготовке баллонов к наполнению, транспортировке и эксплуатации их у потребителей.

Журналы «Технические газы», «Охрана труда» неоднократно публиковали материалы о трагедиях, связанных с эксплуатацией кислородных баллонов, но, на мой взгляд, имеет смысл еще раз перечислить основные требования, которые необходимо соблюдать при работе с ними [1].

Разрешается наполнять кислородом только баллоны, прошедшие освидетельствование и имеющие клеймо испытательного пункта [2]. В соответствии с Положением об учете и использовании шифров клейм, утвержденным приказом Госнадзорохрантруда № 205 от 24.07.97 г., клеймо представляет собой окружность диаметром 12 мм, внутри которой в один ряд размещены прописная буква «У» (Украина), код испытательного пункта и две цифры (код населенного пункта). Например, УБ 41 — Украина, ООО «Кислород сервис», г. Киев. На баллоне также клеймением наносятся месяц, год испытания и год следующего освидетельствования. В горловину баллона должен быть ввернут вентиль, разрешенный к применению на кислородных баллонах (ВК-86, ВК-94, ВК-97, ВК-200). Для уплотнения резьбового соединения вентиля в горловине баллона применяется лента ФУМ или жидкое стекло (смесь из 50% жидкого стекла по ГОСТ 13078-81 и 50% мела по ГОСТ 8253-79). Использование для уплотнения свинцового сурика и глета запрещается.

Наполнители баллонов должны строго выполнять требования «Типовой инструкции по охране труда при наполнении кислородом баллонов и обращении с ними потребителей» [3] и «Правила безопасности при производстве и потреблении продуктов разделения воздуха» (ПБПРВ-88) [4]. Все взрывы кислородных баллонов происходили только из-за невыполнения требований указанных нормативных актов.

При работе с баллонами наиболее часто допускаются такие нарушения: применяются стальные ключи, являющиеся источником искрообразования; наличие масел на вентилях баллонов; не соблюдается время наполнения баллонов (не менее 15 мин), превышается допустимое давление при наполнении; истекающая струя остаточного давления из баллона не проверяется на наличие горючих газов.

При приемке баллонов особое внимание следует обращать на наличие остаточного давления (не ниже 0,5 кгс/см2) и проверять наличие следов углеводородов (метана, пропана, ацетилена) в истекающей струе кислорода. Проверка производится с помощью прибора СГГ-4М-3.70 (Россия) или СТХ-17-2(4) (Украина) [5]. При появлении светового или звукового сигнала баллон к заправке кислородом не допускается и отправляется в ремонтную мастерскую. Предприятия, использующие указанные приборы, уже неоднократно обнаруживали «зараженные» баллоны и изымали их из обращения, тем самым предотвращая возможные взрывы.

ОАО «Криогенмаш» рекомендует для снижения риска взрыва кислородных баллонов перед подсоединением их к наполнительной рампе проводить полный сброс остаточного давления в атмосферу. И хотя эта операция увеличивает общее время заправки баллонов, целесообразно использовать и этот метод. Следует также отметить, что если по каким-либо причинам в баллоне оказалось масло или другие горючие вещества, не определяемые газосигнализатором, то ни анализ остаточного давления газа, ни его сброс перед наполнением не позволят предотвратить возможность взрыва.

Неоднократны случаи, когда баллон без остаточного давления не принимался к заправке на кислородных наполнительных станциях, однако уже через некоторое время этот же баллон привозился повторно с остаточным давлением (водители производили подзаправку баллонов от компрессора воздухом со «следами» масла). В таких случаях рекомендуется баллоны без остаточного давления все же принимать, но с последующей сдачей на переосвидетельствование. К такому потребителю кислорода следует применять административные и финансовые меры воздействия.

Кислородные баллоны относятся к опасным грузам и, хотя минимальное количество 40-литровых баллонов, перевозимых как опасный груз, составляет 25 штук, перевозить даже меньшее количество баллонов следует с соблюдением необходимых мер безопасности в соответствии с «Европейским соглашением о перевозке опасных грузов (ДОПОГ)» и разработанными специализированными организациями на этой основе «Техническими условиями перевозки кислорода сжатого автомобильним транспортом».

Все взрывы кислородных баллонов, как правило, происходят с человеческими жертвами. Наиболее часто такие аварии случаются у потребителей кислорода из-за низкой технической подготовленности ИТР и рабочих при обращении с кислородными баллонами. Так, взрывы кислородных баллонов 31 марта и 15 мая 2003 г. на станциях СТО в г. Краматорске привели к травмам четырех и к гибели шестерых людей. В июне 2004 года взрывы кислородных баллонов в Николаевской и Львовской областях привели к гибели трех человек. Во  всех этих случаях причиной аварий послужили грубейшие нарушения правил безопасности при эксплуатации кислородных баллонов и невыполнение требований безопасности «Кислородная резка. Требования безопасности» [6]. Финал один и тот же — взрыв кислородных баллонов огромной разрушительной силы. Последствия разрушений соответствовали эквиваленту взрыва авиационной бомбы.

Однако и на наполнительных станциях, имеющих более подготовленный персонал, случаются возгорания вентилей и взрывы баллонов. Для примера рассмотрим более подробно взрыв кислородных баллонов, произошедший в мае 2004 г. на ламповом заводе в г.Виннице (ООО «Техногаз»). Кислородная станция была запущена в эксплуатацию в 1980 г. На момент аварии в рабочем состоянии находились две установки: К-0,15 и КжКАж-0,25. Первая работала в газовом режиме, вторая — в газовом кислородном режиме и при необходимости в режиме получения жидкого азота. В качестве реципиентов использовались баллоны большого объема 400 л на давление 20 МПа в количестве более 50 штук. Реципиенты находились на расстоянии 40 м от помещения кислородной станции, были ограждены сетчатым забором с входной калиткой, закрывающейся на замок. Здание наполнительной состояло из следующий помещений:

  • помещение для пустых баллонов — 24 м2 ;
  • помещение наполненных кислородных баллонов — 24 м2 ;
  • помещение наполнительной — 48 м2;
  • помещение по ремонту баллонов — 60 м2 ;

Здание имело две входные двери 1м ´ 2 м и оконный проем 1,5м ´ 2,5 м.

Стены здания толщиной 380 мм выполнены из кирпича, перекрытие — из бетонных плит с рубероидным покрытием. С правой стороны здание сообщалось с азотной наполнительной станцией открытым проемом, а с левой стороны имело общую глухую стену с помещением электрического распредустройства.

Кислородная рампа стандартная 2´5 баллонов, что при работе от кислородной установки обеспечивало время заправки одной ветви рампы примерно 15 мин. Наполнительная рампа соединялась через запорный вентиль КС7141 диаметром 15 мм с латунным трубопроводом Æ28´4мм с реципиентной системой. Следует отметить, что при такой технологической схеме заправка одной ветви наполнительной рампы из 5 баллонов составляла 3–4 мин.

На момент аварии в 22:00 воздухоразделительные установки не работали, аппаратчик и машинист подготавливали одну из них к запуску. К наполнительной рампе было подключено 27 реципиентов с давлением 17,5–18,0 МПа. Наполнитель баллонов (30 лет, стаж работы наполнителем 3 месяца) подключил 5 баллонов к одной ветви наполнительной рампы и открыл на них вентили. По всей вероятности, в одном из баллонов находилось органическое соединение типа метана, пропана, ацетилена, которое в момент уравнивания давления попало в соседний баллон, имеющий меньшее остаточное давление. После открытия вентиля от реципиентов и рампового вентиля на ветви рампы произошел взрыв одновременно двух баллонов. От разорвавшихся баллонов остались только верхние и нижние части, которые были сданы на экспертизу.

Последствия взрыва — мгновенная смерть наполнителя баллонов, находившегося рядом с баллонами. Потолочное перекрытие площадью 160 м2 полностью обрушилось, передняя стена разрушилась, правая стена получила частичные повреждения (трещины), левая стена помещения, общая с помещением распредустройства, также обрушилась. Возникший пожар (деревянный стол, трубопроводы, рубероид) усугублялся тем, что по кислородопроводу Ø28 x 4мм от реципиентов с давлением 18 МПа продолжал поступать кислород. Судить о температуре в обрушившемся помещении можно по одному обгоревшему баллону, имеющему оплавленное отверстие диаметром примерно 130 мм. Перекрыть подачу кислорода удалось только через 20 мин. Последствия были бы значительно хуже, если бы в помещении находились наполненные баллоны, что привело бы к серии дальнейших взрывов. Специальная комиссия, уже на начальном этапе расследования указала на грубейшие нарушения ТБ и правил эксплуатации при наполнении баллонов кислородом.

 3. ЗАКЛЮЧЕНИЕ

 Установить доподлинно причину взрыва того или иного кислородного баллона очень сложно, а чаще всего и просто невозможно. Но, в принципе, причина всегда одна и та же — контакт газообразного кислорода с органическим веществом в сочетании с каким-либо дополнительным фактором. А этими факторами являются температура, давление, скорость движения кислорода, детонация, микроискра, которые и могут привести к взрыву. Немалую роль играет и человеческий фактор.

Выполнение всех требования нормативной документов в большей степени обезопасит от взрывов кислородных баллонов.

 ЛИТЕРАТУРА

 1. Сборник нормативных документов в кислородной промышленности: спр-е изд-е / Сост. В.П. Чижиченко. — К.: Охрана труда, 2001. — 519 с.

2. ДНА ОП 0.00-1.07-94. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (с изменениями и дополнениями). — К.: Госнадзорохрантруда Украины, 1994. — 79с.

3. Типовая инструкция по охране труда при наполнении кислородом баллонов и обращении с ними у потребителей. — М.: ОАО «Гипрокислород», 1991.

4. ПБПРВ-88. Правила безопасности при производстве и потреблении продуктов разделения воздуха. — М.: Металлургия, 1988. — 56 с.

5. Александров Л. К. Правила безопасности при наполнении кислородом баллонов и обращении с ними у потребителей // Технические газы. — 2001. — №3. — С. 58–61.

6. ДСТУ 2448-94. Кислородная резка. Требования безопасности. С изменением № 1 2001г.

trs-kazan.ru