Настройка трв danfoss – Разработка и производство холодильных агрегатов и централей в г. Новосибирск. Скидки! Гарантия! Холодильные комплектующие, холодильные камеры. Монтаж. Торгово-холодильное оборудование Brandford

Содержание

Метод настройки ТРВ

В настоящее время имеется большое количество документов и технических инструкций разработчиков, в которых подробно описывается конструкция ТРВ, их работа технология их подбора и монтажа.

В большинстве документов указывается что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ если по какой-либо причине пот тся необходимость дополнительной регулировки”

Мы рекомендуем следующий метод. Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик которого следует укрепить на термобаллоне ТРВ (смотри рисунок 8.4)


Рис. 8.4

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме близкой к температуре отключения компрессора. (настройка, обеспечивающая стабильность при температуре 25°С, может привести к пульсациям при температуре 20СС).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технология настройки заключается в том, чтобы сначала вывести ТРВ на предельный режим, при котором начнутся пульсации.

  • Для этого при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.
  • Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Внимание. Никогда не врагцайте регулировочный винт больше, чем на один оборот (предельный режим приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота). После каждого изменения настроит (поворота регулировочного винта) следует выждать не менее 15 минут (в дальнейшем это позволит вам сэкономить время на настройку)

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).

В лпом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

ПРИМЕЧАНИЕ. В течение настройки давление конденсации должно оставаться относительно стабильным, но его величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

При настройке могут возникнуть две сложности:

1)    Вам не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя.

В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.

2) Вам не удается исключить пульсации после их возникновения. Это означает, что ТРВ будучи даже полностью закрытым, сохраняет производительность выше, чем производительность испарителя.

В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, когда перегрев достигает слишком большого значения (это наступает когда ТРВ практически перекрыт давление кипения аномально малое и полный перепад температур Абполн слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

Примечание Аномалии, которые могут вызывать перечисленные выше проблемы, возникающие при настройке ТРВ (слишком малый или слишком большой ТРВ плохая подпитка жидкостью нехватка хладагента в контуре нехватка производительности испарителя) более подробно будут проанализированы при детальном изучении каждой из этих неисправностей.

Здесь же мы сформулируем основной вывод из данного раздела: настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому не приступайте к процедуре настройки, не будучи абсолютно уверенными в глубоком понимании наших рекомендаций.

Во всех случаях, когда вы приступаете к настройке ТРВ, обязательно в качестве меры предосторожности заметьте начальную настройку (начальное положение регулировочного винта) и точно подсчитывайте число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

Упражнение

Какая из двух схем, приведенных на рисунке 8.5, представляется вам более удачной? Почему?


Рис. 8.5

Решение

В варианте 2 зону перегрева испарителя обдувает уже охлажденный воздух.

Напротив, в варианте 1 воздух, который обдувает зону перегрева, имеет более высокую температуру.

Мы уже изучили влияние температуры воздуха на заполнение испарителя и на холодопро-изводительность (рисунок 7.1).

Следовательно, схема 1 обеспечивает лучшее заполнение испарителя и является более предпочтительной с точки зрения улучшения холодопроизводительности.

ooopht.ru

Методика регулирования ТРВ

При выборе ТРВ необходимо также предусматривать соответствие его пропускной способности производительности прибора охлаждения (испарителя), так как только в этом случае можно обеспечить абсолютно устойчивую работу регулируемой холодильной установки. С этой целью следует предусматривать минимальный перегрев во всем диапазоне возможной производительности прибора охлаждения. Как можно видеть из рисунке, регулирование может быть устойчивым, только если точка пересечения кривых рабочей характеристики прибора охлаждения и рабочей характеристики ТРВ соответствует рабочей точке холодопроизводительности установки.

Как только достигается статический перегрев Δt3, ТРВ начинает открываться и при полном открытии обеспечивает свою номинальную производительность. При этом перегрев повышается на величину перегрева открытого ТРВ Δtпо. Сумма статического перегрева Δt3, и перегрева открытого ТРВ Δtпо  составляет рабочий перегрев Δtпн.  Изготовители ТРВ устанавливают величину статического перегрева, как правило, в диапазоне от 3 до 5 К. Ее можно изменить в ту или иную сторону, вращая регулировочный винт и поджимая или отпуская при этом пружину. Данная операция приводит к эквидистантному сдвигу рабочей характеристики ТРВ влево или вправо, в результате чего появляется возможность обеспечить устойчивое регулирование установки, расположив рабочую характеристику ТРВ таким образом, чтобы она пересекла характеристику прибора охлаждения точно в рабочей точке номинальной холодопроизводительности. Для приборов охлаждения, работающих при очень малых разностях температур, необходимо предусматривать теплообменник, который, переохлаждая жидкий хладагент, позволяет повысить перегрев.

Выполненная при отправке с завода изготовителя настройка ТРВ соответствует большинству установок. Если возникает необходимость дополнительной регулировки, то нужно использовать регулировочный винт (см. рис. 2). При вращении винта вправо (по часовой стрелке) перегрев повышается, при вращении влево (против часовой стрелки) перегрев понижается.

Для ТРВ марки Т2/ТУ2 полный оборот винта меняет температуру перегрева примерно на 4 ° при температуре кипения 0 °С.

Начиная с ТРВ марки ТЕ5, полный оборот винта дает температуру перегрева около 0,5 К при температуре кипения 0 °С.

Начиная с ТРВ марки ТКЕ3, полный оборот винта дает изменение перегрева примерно на 3 ° при температуре кипения 0 °С.

 

Рекомендуется следующий метод регулировки. Дополнительно на выходе трубопровода из прибора охлаждения помимо манометра (5) устанавливается электронный термометр (3), датчик (6) которого крепится к термобаллону (4) ТРВ, как показано на рис. 3.

Для обеспечения стабильности настройки ТРВ во времени необходимо производить ее при температуре в охлаждаемом объеме, близкой к температуре, при которой отключается компрессор. Не допускается производить настройку ТРВ (регулировку) при высокой температуре в охлаждаемом объеме.

Рекомендуемая регулировка заключается в том, чтобы настроить ТРВ на предельный режим, при котором начинаются пульсации. Для обеспечения этого при постоянной величине перегрева Δtпер = tв.п -t0, необходимо медленно открывать ТРВ до тех пор, пока не начнутся пульсации. При этом значение показаний манометра Рв.п и термометра tв.п не должны изменятся. При последующем открытии вентиля ТРВ могут начаться пульсации показаний манометра Рв.п и термометра tв.п. С этого момента нужно начать закрывать ТРВ до тех пор пока пульсации не прекратятся (примерно на половину оборота регулирующего винта).

Чтобы избежать переполнения испарителя жидкостью, нужно действовать следующим образом. Вращая регулировочный винт вправо (по часовой стрелке), повышать перегрев до прекращения колебаний давления. Затем понемногу вращать винт влево до точки начала колебаний, после этого повернуть винт вправо примерно на 1 оборот (для Т2/ ТЕ2 и ТКЕ на 1/4 оборота). При такой настройке колебания давления отсутствуют, и испаритель работает в номинальном режиме. Изменения перегрева в диапазоне ±0,5 °С не рассматриваются как колебания.

Если в испарителе имеет место чрезмерный перегрев, это может быть следствием его недостаточной подпитки жидкостью. Снизить перегрев можно, вращая регулировочный винт влево (против часовой стрелки), постепенно выходя на точку колебаний давления. После этого повернуть винт вправо на один оборот (для ТРВ типа Т2/ТЕ и ТКЕ на 1/4 оборота). При такой настройке колебания давления прекращаются, и испаритель работает в номинальном режиме. Изменения перегрева в диапазоне ±0,5 °С не рассматриваются как колебания.

В случае если ТРВ будет отрегулирован на минимальный возможный перегрев, необходимый для нормальной работы данной холодильной установки, заполнение прибора охлаждения жидким хладагентом будет достигнуто номинальным, а пульсации величины перегрева паров хладагента прекратятся. В процессе регулировки ТРВ давление конденсации должно оставаться относительно стабильным и близким по значению (Рк ~ Рк.н) при номинальных условиях работы, так как от них зависит холодопроизводительность ТРВ.

При регулировке возможны следующие осложнения: 

1. Не удается регулировкой добиться пульсаций.

Это означает, что при полностью открытом ТРВ, его производительность ниже, чем производительность прибора охлаждения. Это связано со следующими причинами: либо проходное сечение (f) ТРВ мало, либо в установке не хватает хладагента и на вход ТРВ поступает недостаточное количество жидкого хладагента из конденсатора.

2. Не удается устранить пульсации после их возникновения.

Это означает, что производительность ТРВ выше, чем пропускная способность прибора охлаждения. Это связано с тем, что либо проходное сечение (f) ТРВ слишком большое, либо прибору охлаждения не хватает жидкого хладагента.

Регулировка ТРВ невозможна, когда перегрев достигает большего значения (это наступает, когда ТРВ практически закрыт, давление испарения небольшое, и полный перепад температур между температурой воздуха на входе в прибор охлаждения tв1 и температурой кипения хладагента t0 большой). Это означает, что в приборе охлаждения образуется меньше паров, чем способен всасывать компрессор, т.е. холодопроизводительность прибора охлаждения недостаточна.

Следовательно, если не удается найти режим настройки, который устраняет пульсации давления, необходимо произвести замену ТРВ, либо осуществить замену седел с отверстиями (патронов), если конструкция ТРВ предусматривает наличие комплекта сменных патронов. В этом случае, чтобы снизить расход, нужно заменить ТРВ или сменить патрон с отверстием. Если перегрев в испарителе слишком большой, пропускная способность ТРВ мала. Тогда, чтобы повысить расход, нужно также поменять патрон. ТРВ компании Danfoss марки ТЕ поставляются с комплектом сменных патронов. ТРВ марки ТКЕ имеют фиксированное отверстие седла.

Дроссельное (или сопловое) отверстие многих ТРВ выполняется в виде сменного вкладыша, что позволяет обеспечить новое значение его производительности простой заменой этого элемента. Терморегулирующий (силовой, управляющий) тракт ТРВ, т.е. комплекс, состоящий из верхней части ТРВ (надмембранная полость, образующая терморегулирующий элемент), капиллярной трубки и термобаллона, также иногда бывает сменным, что позволяет подобрать наилучший вариант заправки термобаллона (паровая, жидкостная или адсорбционная заправка), наиболее подходящий для конкретных условий работы данной установки.

Текущее обслуживание ТРВ

1. В ходе эксплуатации следует периодически проверять герметичность вентиля и мест его соединения на трубопроводе. Нарушение герметичности может возникнуть в результате ослабления резьбовых соединений и усадки прокладок.

Для восстановления герметичности мест присоединения вентиля следует подтянуть гайки крепления фланцев и уравнительной линии.

Если течь установлена в месте свинчивания штуцера с корпусом, восстановление герметичности может быть достигнуто подтяжкой штуцера.

Течь в сальнике узла настройки устраняется подтяжкой гайки с помощью специального ключа, входящего в комплект поставки.

Течь по месту соединения головки вентиля с корпусом должна устраняться только в мастерской.

Вес работы должны выполняться только с помощью гаечных ключей. Применение ударных предметов не допускается.

Проверка герметичности должна производиться с соблюдением «Правил техники безопасности на фреоновых холодильных установках».

2. Если во время работы часть прибора охлаждения не обмерзает, а давление всасывания после включения холодильной установки быстро понижается, то это свидетельствует о неправильной настройке ТРВ (малом его открытии).

Чтобы обеспечить нормальную работу холодильной установки, не рекомендуется менять заводскую настройку вентилей. Следует помнить, что ТРВ, регулируя степень заполнения прибора охлаждения хладагентом, только косвенно оказывает влияние на температуру в холодильных камерах. При необходимости изменить температуру в холодильных камерах это должно достигаться изменением настройки специально для этого предназначенных реле и регуляторов температуры. Регулирование температуры изменением настройки ТРВ, т.е. путем изменения величины перегрева начала открытия клапана, приводит к снижению экономичности работы установки, а также к преждевременному выходу агрегата из строя.

Если все же возникает необходимость произвести подрегулировку перегрева начала открытия клапана, изменяют настройку медленным поворачиванием регулировочного винта с выдержкой через каждые пол-оборота для нормализации режима работы установки.

3. Разборка вентиля, не связанная с настройкой вентиля, не допускается.

www.newhk.ru

Разработка и производство холодильных агрегатов и централей в г. Новосибирск. Скидки! Гарантия! Холодильные комплектующие, холодильные камеры. Монтаж. Торгово-холодильное оборудование Brandford

ПРОЕКТИРОВАНИЕ, ПРОДАЖА, МОНТАЖ

ХОЛОДИЛЬНЫХ УСТАНОВОК СОБСТВЕННОГО ПРОИЗВОДСТВА, ХОЛОДИЛЬНЫХ КАМЕР, ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ, КОМПЛЕКТУЮЩИХ И ТОРГОВОГО ХОЛОДИЛЬНОГО ОБОРУДОВАНИЯ

ДЛЯ СУПЕРМАРКЕТОВ, ПРОИЗВОДСТВ И ПРЕДПРИЯТИЙ ОБЩЕСТВЕННОГО ПИТАНИЯ

                                                                                          

 

                        

                                                                                                                                                                      

 

                                         

                                                    

                                                      

 

а также:

КОМПЛЕКСНЫЙ ПОДХОД К ПОСТАВКЕ ХОЛОДИЛЬНОГО ОБОРУДОВАНИЯ

  • Проектирование и реализацию крупных объектов торговых предприятий “под ключ”
  • Переформатирование существующих традиционных магазинов
  • Обучение персонала на всех видах оборудования, поставляемого нашей компанией
  • Гарантийное и постгарантийное техническое обслуживание холодильного оборудования нашим сервисным центром.

Получив техническое задание, мы производим расчет требуемой холодопроизводительности для правильной и безаварийной работы холодильной системы. Изготавливим холодильную уставноку, подбирем теплообменное оборудование, скомплектуем монтажные материалы, произведем монтаж и гарантийное сервисное обслуживание.

Помимо холодильных установок мы производим также монтаж холодильных камер из сэндвич-панелей, устанавливаем двери, завесы различного назначения

В нашем каталоге холодильного оборудования представлены комплектующие, которые мы используем для реализации комплекса по холодообеспечению. У нас вы можете купить компрессоры Danfoss, Bitzer, Copeland, Embraco Aspera. Воздухоохладители представлены известными брендами Lu-Ve, Alfa Laval, GÜNTNER, ECO, Garcia Camara. 

Уже много лет мы отдаём предпочтение холодильным машинам Polair, они производятся в виде моноблоков и сплит-систем. Их преимущество заключается в низких затратах на оборудование и простоту управления для Вашего персонала. Также мы рекомендуем использовать холодильные камеры POLAIR, они производятся в двух модификациях POLAIR Standard и POLAIR Professionale.

 

 

 

 

www.tk-sibirholod.ru

14. Слишком слабый трв.

 14. Слишком слабый трв.14.1. АНАЛИЗ СИМПТОМОВ

Неисправность, обусловленная недостаточной пропускной способностью ТРВ, охватывает большое число различных отказов, при которых появляются аналогичные симптомы. Предметом рассмотрения настоящего раздела является изучение этих симптомов.
ПРи необходимости можете вновь изучить разделы 3 и 4.

А) Влияние на систему ТРВ/испаритель

Чтобы проиллюстрировать неисправность, обусловленную малой пропускной способностью ТРВ, возьмем в качестве примера ТРВ, в котором отверстие имеет слишком малый диаметр вследствие ошибки при выборе сменного проходного сечения (сечение b было установлено вместо сечения В, см. рис. 14.1).

В результате расход жидкости становится недостаточным и последняя капелька выкипает внутри испарителя очень рано (точка 1).
Поскольку последняя капелька выкипела слишком рано, пары будут находиться под действием проходящего через испаритель воздуха в течение очень длительного времени, что обусловлено увеличением длины участка перегрева по сравнению с нормой.
Поэтому температура в термобаллоне (точка 2) будет аномально высокой (в пределе, температура линии всасывания может стать почти равной температуре окружающей среды).

Испаритель очень слабо заполнен хладагентом, массовый расход хладагента и холодопроизво-дительность падают. В том помещении, которое охлаждается, температура растет и клиент вынужден обращаться с просьбой об устранении неисправности, поскольку “стало очень жарко”.

Поскольку температура в охлаждаемом объеме выросла, увеличилась также и температура воздуха на входе в испаритель (точка 3).
Ввиду того, что на вход в испаритель поступает слишком теплый воздух (точка 3), а холодо-производительность низкая, воздух охлаждается плохо и температура воздушной струи в точке 4 аномально высокая.

Б) Влияние на систему испаритель/компрессор

При прохождении через испаритель каждый килограмм жидкости, который выкипает, поглощая тепло, производит некоторое количество пара.

 
 Поскольку ТРВ не пропускает достаточного количества жидкости, количество производимого пара очень сильно падает.

Однако компрессор может потенциально поглотить гораздо больше пара, чем производит испаритель, поэтому давление кипения становится аномально малым (точка 5 на рис. 14.2).

Ввиду того, что давление кипения имеет тенденцию к падению, а температура воздуха на входе в испаритель повышается, полный температурный напор Абполн на испарителе становится аномально высоким.

При падении давления кипения температура кипения также падает в соответствии с соотношением между температурой и давлением для данного хладагента.

Одновременно повышается температура термобаллона (точка 2) и перегрев обязательно будет очень высоким.
Если мы имеем дело с кондиционером, то при нормальном функционировании температура кипения всегда выше 0°С.

Однако в связи с тем, что производительность ТРВ
недостаточна, давление кипения слишком низкое, температура кипения может оказаться отрицательной и трубопровод на выходе из ТРВ будет в этом случае покрываться инеем, образующимся из конденсата паров, которые содержатся в охлаждаемом воздухе (точка 6 на рис. 14.2).

В) Влияние на систему компрессор/конденсатор


В связи с тем, что перегрев очень большой и температура термобаллона повышена, температура паров, всасываемых в компрессор, также повышена.
Охлаждение двигателя герметичных или бессальниковых компрессоров осуществляется за счет всасываемых паров, а поскольку их температура повышена, охлаждение электродвигателя будет ухудшаться.

Как следствие, компрессор станет более горячим (вместо того, чтобы быть холодным) в зоне вентиля всасывания (точка 7 на рис. 14.3), а в нижней части картера (в зоне, где находится масло) он будет чрезвычайно горячим (точка 8).
Таким образом, по причине большого перегрева на линии всасывания весь компрессор будет аномально горячим.
Заметим, что повышенная температура газа в магистрали всасывания приводит к тому, что температура газа в нагнетающей магистрали (точка 9) будет также более высокой.

Более того, мы увидели, что холодопроизводительность стала аномально низкой. Однако параметры конденсатора были выбраны из условия теплоотдачи, рассчитанной по нормальной холодопроизводительности.

Поэтому получается, что конденсатор становится переразмеренным!

Если используемый в установке способ регулирования давления конденсации не позволяет изменять расход воздуха через конденсатор, перепад температуры воздуха на конденсаторе становится ниже обычного и на выходе из него (точка 10) температура воздуха будет менее высокой.
Кроме того, обусловленная малой пропускной способностью ТРВ, переразмеренность конденсатора приводит и к другим нежелательным для установки последствиям.

Так, из-за нехватки жидкости в испарителе, в конденсаторе и в жидкостном ресивере ее количество будет избыточным.
Поскольку при этом конденсатор является переразмеренным, эта жидкость будет значительно лучше охлаждаться и, следовательно, в соответствии с соотношением между температурой и давлением, давление конденсации будет падать, причем величина его падения будет зависеть от используемого в составе установки способа регулирования давления конденсации.
Наконец, имея ввиду, что конденсатор переразмерен, мы вправе ожидать преждевременной конденсации последней молекулы газа, которая произойдет в точке 11 (см. рис. 14.4), обусловив тем самым увеличение длины участка конденсатора, на котором происходит переохлаждение.

В результате, измеренная на выходе из конденсатора (в точке 13) величина переохлаждения окажется, по-видимому, высокой.

ВНИМАНИЕ! НЕ ПУТАЙТЕ НЕИСПРАВНОСТИ, ОБУСЛОВЛЕННЫЕ НИЗКОЙ ПРОПУСКНОЙ СПОСОБНОСТЬЮ ТРВ, С ПРЕЖДЕВРЕМЕННЫМ ДРОССЕЛИРОВАНИЕМ ХЛАДАГЕНТА ДО ПОСТУПЛЕНИЯ В ТРВ.

Чтобы быть уверенным в своем диагнозе, вы должны убедиться в том, что на жидкостной магистрали отсутствуют засоры или преждевременное дросселирование, которые могут заставить вас прийти к ошибочному выводу о нормальном переохлаждении.
Следовательно, вашим эталоном для оценки величины переохлаждения должны быть данные измерения температуры жидкости на выходе из конденсатора (точка 13).
В противном случае, перекрытый жидкостной вентиль на выходе из ресивера (низкая температура в точке 12 ^1) или засоренный фильтр-осушитель (низкая температура в точке 14 ^1), а также вскипание на входе в ТРВ (низкая температура в точке 15 ^1) могут создать иллюзию нормального переохлаждения (неисправности, обусловленные преждевременным дросселированием, будут рассмотрены несколько позже).

ВАЖНОЕ ЗАМЕЧАНИЕ! Не следует путать переохлаждение с температурой жидкостной линии.
Переохлаждение определяется как разность между температурой конденсации, соответствующей показанию манометра БД, и температурой жидкого хладагента, измеренной на выходе из конденсатора (см. раздел 2.2).

 14.2. ОБОБЩЕНИЕ ПРИЗНАКОВ, СВИДЕТЕЛЬСТВУЮЩИХ О НИЗКОЙ ПРОПУСКНОЙ СПОСОБНОСТИ ТРВ


Внимание! Например, в воздушных кондиционерах величина НД, соответствующая температуре кипения 0°С, может считаться пониженной, если температура воздуха на входе в испаритель около 25°С (Лвполн = 25 — 0 = 25 К), вместе с тем, величина НД при той же температуре кипения 0°С может считаться нормальной для температуры воздуха на входе в испаритель 18°С (Лвполн = 18-0 = 18 К). При необходимости вернитесь к разделу 7.

 14.3. АЛГОРИТМ ВЫЯВЛЕНИЯ НИЗКОЙ ПРОПУСКНОЙ СПОСОБНОСТИ ТРВ


Если перегрев повышен, это обязательно указывает на нехватку жидкости в испарителе. Если переохлаждение в норме, значит конденсатор заполнен жидкостью.

В таком случае, почему она не доходит до испарителя?
►    Это может означать либо закупорку жидкостной магистрали (и тогда мы будем иметь преждевременное дросселирование).
►    Либо ее поступлению в испаритель мешает ТРВ, вследствие своей низкой пропускной способности.

 14.4. ЗАКЛЮЧЕНИЕ


Почему компрессор перестал охлаждать?.. Посмотрим…
О! Упало давление кипения… Что же могло произойти?..
Недостаточный расход воздуха через испаритель?.. Нет, перегрев громадный…
Не хватает хладагента в контуре?.. Не может быть, ведь переохлаждение в норме..
Может быть образовалась пробка на жидкостной магистрали?..
НЕТ, поскольку перепад температур отсутствует…
Следовательно, это может быть только…
СЛИШКОМ НИЗКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ТРВ!

 14.5. ПРАКТИЧЕСКИЕ АСПЕКТЫ УСТРАНЕНИЯ НЕИСПРАВНОСТИ, ОБУСЛОВЛЕННОЙ НИЗКОЙ ПРОПУСКНОЙ СПОСОБНОСТЬЮ ТРВ

После того, как вы удостоверились в том, что причина аномальной работы установки заключается в недостаточной производительности ТРВ (падение холодопроизводительности, падение давления кипения, повышенный перегрев, нормальное переохлаждение, отсутствие температурного перепада на жидкостной линии), следует точно определить, какой дефект или ошибка обусловили низкую производительность ТРВ, чтобы устранить их.

Поэтому сейчас мы будем изучать различные причины, которые могут привести к снижению производительности ТРВ и вызвать появление признаков, свойственных этой неисправности.

Неправильно выбранный ТРВ с малым диаметром проходного сечения

Напомним, что для данного хладагента фактическая производительность ТРВ взаимно зависит от давлений конденсации и кипения (см. раздел 8.1 “Производительность ТРВ “).
В случае сомнений, только справочные данные разработчика (потребные значения рабочих давлений и точные характеристики ТРВ) смогут дать уверенность в том, что выбранная производительность соответствует требуемой.
Внимание! Ремонтник должен быть особенно внимателен, если речь идет о ТРВ, оснащенных взаимозаменяемыми сменными проходными сечениями. К примеру, ТРВ фирмы DANFOSS марки ТЕХ2 для R22 имеет производительность от 7 кВт (с проходным сечением № 3) до 17 кВт (с проходным сечением № 6) для одних и тех же условий функционирования.
Точно так же ТРВ фирмы ALCO марки TIE.HW для R22 имеет производительность от 1,2 кВт (с проходным сечением №0) до 18 кВт (с проходным сечением №6).

Однако по внешнему виду нельзя с уверенностью утверждать, какой номер проходного сечения установлен в ТРВ. Если у вас появились сомнения, нужно будет извлечь сменный патрон из ТРВ и на его корпусе прочитать выгравированный номер проходного сечения.

В этом случае ремонт заключается в том, чтобы установить патрон с увеличенным проходным сечением, приспособленным для получения ожидаемой производительности, а затем правильно отрегулировать ТРВ.

Неправильная настройка. ТРВ недостаточно открыт

Вспомните, что оптимально настроенный ТРВ должен обеспечивать минимально возможный перегрев, который можно поддерживать, не допуская возникновения пульсаций, при этом охлажденный воздух должен иметь температуру, наиболее близкую к температуре, при которой термостат отключает компрессор (см. раздел 8.3 “Метод настройки ТРВ”).

Никогда не меняйте настройку ТРВ, если вы не уверены в абсолютной справедливости своего диагноза. Если вы хотите это сделать, примите необходимые меры для того, чтобы, в случае необходимости, вернуться к первоначальной настройке.

Разрушен управляющий тракт ТРВ

Эта неисправность часто возникает вследствие плохого крепления капилляра, соединяющего управляющую полость мембраны ТРВ с термобаллоном. Как правило негерметичность появляется либо в месте подвода капилляра к ТРВ, либо в месте его соединения с термобаллоном в результате чрезмерных вибраций капилляра, а также в самом капилляре в случае, когда имеет место многократное трение капилляра при его вибрациях о какую-либо металлическую деталь установки.

Точно установите место повреждения капилляра с целью его замены на аналогичный, обратив внимание на характер повреждения и место разрушения, чтобы при замене не повторить ошибку, допущенную ранее во время монтажа!

Примечание. Такая поломка приводит к полному перекрытию проходного сечения ТРВ, что очень быстро вызовет остановку компрессора по сигналу от предохранительного реле НД (см. раздел 4 “Работа ТРВ “).

Термобаллон ТРВ установлен ниже по потоку от места врезки трубки внешнего уравнивания давления

Рассмотрим схему на рис. 14.8, на которой показан ТРВ с трубкой внешнего уравнивания давления, установленной неверно по отношению к термобаллону (этот тип ТРВ описан в разделе 46).


В том случае, если уплотнение, обеспечивающее непроницаемость между приемной камерой низкого давления (поз. А) и камерой дросселирования, в результате износа, обусловленного продолжительным трением о направляющие штока иглы ТРВ, потеряет герметичность, появляется опасность частичного проникновения жидкости в полость А. Из этой полости незначительное количество жидкости по уравнительной трубке может попасть на выход испарителя и привести к аномальному охлаждению термобаллона, вызывая тем самым неоправданное закрытие ТРВ.

Если утечка существует, разница в температурах между точками В и С может быть легко обнаружена простым прикосновением к этим двум трубопроводам.

Чтобы избежать этой проблемы, следует считать предпочтительным крепление термобаллона выше по потоку от места врезки уравнительной трубки в точке С на расстоянии не менее 10 см друг от друга (см. также раздел 49 “Проблемы термобаллона ТРВ”).

Управляющий тракт и термобаллон заполнены не тем хладагентом, который используется в установке

Вспомним, что давление, развиваемое в термобаллоне, является единственной силой, которая используется для открытия ТРВ. Когда температура термобаллона повышается, давление внутри него также растет и это повышение давления вызывает открытие ТРВ (см. раздел 4 “Работа ТРВ”).
На рис. 14.9 представлены различные варианты работы ТРВ.


Поз. 1. Этот ТРВ предназначен для питания испарителя с прямым циклом расширения в небольшом кондиционере и работает на R22. Температура кипения составляет 4°С, а перегрев поддерживается на уровне 7 К.
Поэтому, когда температура в термобаллоне превысит 11СС, что для управляющего тракта, содержащего R22, эквивалентно давлению в 6 бар, ТРВ начнет открываться. То есть давление открытия ТРВ составляет 6 бар.
Следовательно, чтобы ТРВ начал открываться, давление в термобаллоне должно достигнуть 6 бар. Если давление в термобаллоне низке 6 бар, ТРВ будет закрыт.

Поз. 2. Представим себе, что в результате ошибки при монтаже или ремонте на ТРВ установили термостатический элемент с термобаллоном, заполненным R12*.
Когда температура термобаллона будет равна 11 °С, давление в нем составит только 3,4 бар и, следовательно, ТРВ будет полностью закрыт.

Поз. 3. Для того, чтобы ТРВ начал открываться, нужно, чтобы давление в термобаллоне поднялось до 6 бар. Для R12 это означает, что температура термобаллона должна повыситься до 27°С!
При этом перегрев становится огромным и испаритель будет содержать так мало жидкости, как если бы производительность ТРВ была недостаточной!
Некоторые конструкции ТРВ имеют сменный управляющий тракт, который состоит из мембранного узла, капилляра и термобаллона (прим. ред.).

Как выявить эту аномалию? Сначала нужно удостовериться, что неисправность не вызвана другой причиной. После этого нужно обязательно определить, с одной стороны, какой хладагент используется в установке, а с другой стороны, каким хладагентом заполнен термобаллон и управляющий тракт ТРВ…


Тип хладагента, заполняющего управляющий тракт ТРВ, всегда указан на верхней крышке мембранного узла, иногда в виде цветного кода (обычно желтый цвет означает R12, зеленый -R22 и фиолетовый – R502).
Однако распространение новых хладагентов может несколько осложнить ситуацию, потому что некоторые из них (особенно переходные смеси типа HCFC, которые не требуют замены ТРВ) могут работать без проблем с использованием ТРВ, не предназначенных для работы совместно с этими хладагентами! (см. раздел 56 “Проблемы, возникшие с появлением новых хладагентов “).

Если наименование хладагента не указано на установке и вы сомневаетесь, к какому типу он относится (хорошим способом определения вида хладагента является соотношение между давлением и температурой), никогда не стесняйтесь спросить у клиента, который располагает необходимой документацией на установку и, как правило, очень хорошо знает ее историю.

Механическое заклинивание штока ТРВ и его заедание при открытии

Эта неисправность может иметь чисто механическую причину и тогда следует просто заменить ТРВ. Однако, она может быть вызвана также загрязнениями холодильного контура присутствием влаги, грязи или посторонних частиц, которые налипают на подвижные части (в некоторых крайних случаях внутренние поверхности ТРВ могут становиться клейкими и прилипать к пальцам).
В случае загрязненного контура ремонтник не должен удовлетвориться очисткой ТРВ и заменой фильтра-осушителя.
Он должен подумать о нежелательных последствиях такого загрязнения (в особенности для компрессора) и провести проверку масла на содержание в нем кислоты.

В том случае, если результаты проверки будут положительными, он должен предпринять все необходимые меры для полной очистки системы, иначе компрессор (герметичный или бессальниковый) имеет серьезные шансы быстро выйти из строя.

Закупорка фильтра на входе в ТРВ

Как и предшествующая неисправность, эта аномалия (к счастью, довольно редкая) означает, что холодильный контур крайне загрязнен, а фильтр-осушитель неэффективен. Следует предпринять те же меры, что и в предыдущем случае.

Аномальное падение давления конденсации

Мы видели, что производительность ТРВ в значительной степени определяется давлением в магистрали на входе в ТРВ (см. раздел 8.1 “Производительность ТРВ”).

Когда наружная температура падает, падает также и давление конденсации, и тогда система регулировки конденсатора с воздушным охлаждением должна поддерживать значение давления конденсации в разумных пределах (см. раздел 32 “Почему нужно регулировать конденсаторы с воздушным охлаждением “).

Какими бы ни были причины отсутствия такого регулирования (неисправность системы регулировки давления конденсации, плохая настройка…), если давление жидкости на входе в ТРВ падает, количество жидкости, которое способен пропустить ТРВ в испаритель также уменьшается, даже если дроссельное отверстие полностью открыто.

Как следствие, количество паров, производимых испарителем, сильно уменьшается, вызывая падение давления кипения, что сопровождается всеми признаками низкой производительности ТРВ (см. рис. 14.10).

Следовательно, главное — это при любой наружной температуре постоянно поддерживать на входе в ТРВ высокое давление, способное обеспечить на выходе из него нормальную подпитку испарителя жидким хладагентом.

ПРИМЕЧАНИЕ. Однако, некоторые неопытные ремонтники, столкнувшись с падением давления конденсации, имеют тенденцию слишком легко пользоваться регулировочным винтом ТРВ, вращают его как попало, что неизбежно приводит к разрегулированию установки.
В связи с этим, нам представляется полезным еще раз напомнить, что ТРВ не предназначен для регулировки давления кипения, что настройка ТРВ является трудоемкой и сложной операцией (чтобы сбить настройку иногда достаточно повернуть винт всего на 1/8 оборота) и что для прямого воспроизведения перегрева достаточно зажать термобаллон в ладони вместо того, чтобы бестолково крутить винт настройки ТРВ (см. рис. 14.11).

Малое отверстие диафрагмы распределителя
Некоторые модели испарителей, главным образом предназначенные к использованию в торговом холодильном оборудовании, изначально снабжены жидкостным распределителем с взаимозаменяемой сменной диафрагмой, которую можно извлечь из питателя после его де-Ч    монтажа, удалив стопорное кольцо (см. рис. 14.12).

  Номер отверстия выгравирован на корпусе диафрагмы, чтобы с уверенностью идентифицировать ее (чем больше номер диафрагмы, тем больше диаметр ее отверстия). Такая конструкция сменной диафрагмы позволяет в зависимости от требуемой температуры кипения (охлаждение или заморозка) и типа используемого хладагента (R12, R22, R134a, R404A, R502…) подобрать производительность испарителя и
питателя в соответствии с условиями работы установки.

Метод регулировки заключается в том, что для более низких потребных значений температуры кипения устанавливают диафрагму с большим диаметром отверстия. Кроме того, для одинаковых условий работы, установка на R12 (или на R134a) требует диафрагму с более значительным диаметром, чем установка на R22 (или на R404A).

Как правило такие испарители имеют диафрагму для R12 (R134a), установленную на заводе-изготовителе, но зачастую они снабжаются также запасной диафрагмой для R22 (R404A), вложенной в мешочек внутри упаковки испарителя и входящей в комплект поставки.

Ее можно использовать при необходимости заправки контура другим хладагентом, причем в конструкторской документации указаны номера отверстий, пригодных для данной модели испарителя, используемого хладагента и требуемой температуры кипения.

Если распределитель оборудован диафрагмой с малым отверстием, расход жидкости будет пониженным даже в случае полного открытия ТРВ и установка будет иметь все признаки, присущие низкой производительности ТРВ.

Установка снабжена регулятором давления в картере (пусковым регулятором), но ТРВ находится под действием ограничителя максимального рабочего давления (МОР), иначе называемого защитой мотора от перегрузки (см. рис. 14.13).

Проблемы совместной работы регулятора давления в картере и ТРВ с заправкой МОР детально рассматриваются в разделе 48 “Регуляторы давления в картере” (регуляторы запуска).

Небольшой трехходовой электроклапан управляет большим ТРВ


Схема монтажа этого довольно специфичного варианта представлена на рис 14.14.
Этот вариант встречается, когда жидкостная магистраль имеет очень большой диаметр, то есть когда холодопроизводительность установки сравнительно высокая (порядка многих десятков киловатт).
Такая схема анализируется в разделе, посвященном детальному изучению термостатических расширительных вентилей (см. раздел 46 “Термостатические расширительные вентили “).

ОСОБЕННОСТИ НЕБОЛЬШИХ СИСТЕМ
Особенности расширительных устройств, используемых в малых холодильных установках (домашние холодильники, бытовые индивидуальные кондиционеры, небольшие тепловые насосы, см. рис. 14.15), рассматриваются в разделе.”

Чтобы проиллюстрировать неисправность, обусловленную малой пропускной способностью ТРВ, возьмем в качестве примера ТРВ, в котором отверстие имеет слишком малый диаметр вследствие ошибки при выборе сменного проходного сечения (сечение b было установлено вместо сечения В, см. рис. 14.1).
В результате расход жидкости становится недостаточным и последняя капелька выкипает внутри испарителя очень рано (точка 1).
Поскольку последняя капелька выкипела слишком рано, пары будут находиться под действием проходящего через испаритель воздуха в течение очень длительного времени, что обусловлено увеличением длины участка перегрева по сравнению с нормой.
Поэтому температура в термобаллоне (точка 2) будет аномально высокой (в пределе, температура линии всасывания может стать почти равной температуре окружающей среды).
Испаритель очень слабо заполнен хладагентом, массовый расход хладагента и холодопроизво-дительность падают. В том помещении, которое охлаждается, температура растет и клиент вынужден обращаться с просьбой об устранении неисправности, поскольку “стало очень жарко”.

vmestogaza.ru

Практические аспекты устранения неисправности, обусловленной низкой пропускной способностью ТРВ

После того, как вы удостоверились в том, что причина аномальной работы установки заключается в недостаточной производительности ТРВ (падение холодопроизводительности, падение давления кипения, повышенный перегрев, нормальное переохлаждение, отсутствие температурного перепада на жидкостной линии), следует точно определить, какой дефект или ошибка обусловили низкую производительность ТРВ, чтобы устранить их.

Поэтому сейчас мы будем изучать различные причины, которые могут привести к снижению производи тельности ТРВ и вызвать появление признаков, свойственных этой неисправности.

Неправильно выбранный ТРВ с малым диаметром проходного сечения.

Напомним, что для данного хладагента фактическая производительность ГРВ взаимно зависит от давлений конденсации и кипения.

В случае сомнений, только справочные данные разработчика (потребные значения рабочих давлений и точные характеристики ТРВ) смогут дать уверенность в том, что выбранная производительность соответствует требуемой.

Внимание! Ремонтник должен быть особенно внимателен, если речь идет о ТРВ, оснащенных взаимозаменяемыми сменными проходными сечениями. К примеру, ТРВ фирмы DANFOSS марки ТЕХ2 для R22 имеет производительность от 7 кВт (с проходным сечением № 3) до 17 кВт (с проходным сечением № 6) для одних и тех же условий функционирования. Точно так же ТРВ фирмы ALCO марки TIE.HW для R22 имеет производительность от 1,2 кВт (с проходным сечением №0) до 18 кВт (с проходным сечением №6).

Однако по внешнему виду нельзя с уверенностью утверждать, какой номер проходного сечения установлен в ТРВ. Если у вас появились сомнения, нужно будет извлечь сменный патрон из ТРВ и на его корпусе прочитать выгравированный номер проходного сечения.

В этом случае ремонт заключается в том, чтобы установить патрон с увеличенным проходным сечением, приспособленным для получения ожидаемой производительности, а затем правильно отрегулировать ТРВ.

Неправильная настройка. ТРВ недостаточно открыт

Вспомните, что оптимально настроенный ТРВ должен обеспечивать минимально возможный перегрев, который можно поддерживать, не допуская возникновения пульсаций, при этом охлажденный воздух должен иметь температуру, наиболее близкую к температуре, при которой термостат отключает компрессор.

Никогда не меняйте настройку ТРВ, если вы не уверены в абсолютной справедливости своего диагноза. Если вы хотите это сделать, примите необходимые меры для того, чтобы, в случае необходимости, вернуться к первоначальной настройке.

Разрушен управляющий тракт ТРВ

Эта неисправность часто возникает вследствие плохого крепления капилляра, соединяющего управляющую полость мембраны ТРВ с термобаллоном. Как правило негерметичность появляется либо в месте подвода капилляра к ТРВ, либо в месте его соединения с термобаллоном в результате чрезмерных вибраций капилляра, а также в самом капилляре в случае, когда имеет место многократное трение капилляра при его вибрациях о какую-либо металлическую деталь установки.

Точно установите место повреждения капилляра с целью его замены на аналогичный, обратив внимание на характер повреждения и место разрушения, чтобы при замене не повторить ошибку, допущенную ранее во время монтажа!

Примечание. Такая поломка приводит к полному перекрытию проходного сечения ТРВ, что очень быстро вызовет остановку компрессора по сигналу от предохранительного реле НД.

Термобаллон ТРВ установлен ниже по потоку от места врезки трубки внешнего уравнивания давления

Рассмотрим схему на рисунке 14.8, на которой показан ТРВ с трубкой внешнего уравнивания давления, установленной неверно по отношению к термобаллону.


Рис. 14.8

В том случае, если уплотнение, обеспечивающее непроницаемость между приемной камерой низкого давления (поз. А) и камерой дросселирования, в результате износа, обусловленного продолжительным трением о направляющие штока иглы ТРВ, потеряет герметичность, появляется опасность частичного проникновения жидкости в полость А Из этой полости незначительное количество жидкости по у равнительной трубке может попасть на выход испарителя и привести к аномальному охлаждению термобаллона, вызывая тем самым неоправданное закрытие ТРВ.

Если утечка существует, разница в температурах между точками В и С может быть легко обнаружена простым прикосновением к этим двум трубопроводам.

Чтобы избежать этой проблемы, следует считать предпочтительным крепление термобаллона выше по потоку от места врезки у равнительной трубки в точке С на расстоянии не менее 10 см друг от друга.

Управляющий тракт и термобаллон заполнены не тем хладагентом, который используется в установке.

Вспомним, что давление, развиваемое в термобаллоне, является единственной силой, которая используется для открытия ТРВ Когда температура термобаллона повышается, давление внутри него также растет и это повышение давления вызывает открытие ТРВ.

На рис 14.9 представлены различные варианты работы ТРВ.


Рис. 14.9

Позиция 1. Этот ТРВ предназначен для питания испарителя с прямым циклом расширения в небольшом кондиционере и работает на R22. Температура кипения составляет 4 °С, а перегрев поддерживается на уровне 7 К.

Поэтому, когда температура в термобаллоне превысит 11 °С, что для управляющего тракта, содержащего R22, эквивалентно давлению в 6 бар, ТРВ начнет открываться. То есть давление открытия ТРВ составляет 6 бар.

Следовательно, чтобы ТРВ начал открываться, давление в термобаллоне должно достигнуть 6 бар. Если давление в термобаллоне ниже 6 бар, ТРВ будет закрыт.

Позиция 2. Представим себе, что в результате ошибки при монтаже или ремонте на ТРВ установили термостатический элемент с термобаллоном, заполненным R12 (Некоторые конструкции ТРВ имеют сменный управляющий тракт, который состоит из мембранного узла, капил ляра и термобаллона).

Когда температура термобаллона будет равна 11 °С, давление в нем составит только 3.4 бар и, следовательно, ТРВ будет полностью закрыт.

Позиция 3. Для того, чтобы ТРВ начал открываться нужно, чтобы давление в термобаллоне поднялось до 6 бар. Для R12 это означает, что температура термобаллона должна повыситься до 27°С!

При этом перегрев становится огромным и испаритель будет содержать так мало жидкости, как если бы производительность ТРВ была недостаточной!

Как выявить эту аномалию? Сначала нужно удостовериться, что неисправность не вызвана другой причиной. После этого нужно обязательно определить, с одной стороны, какой хладагент используется в установке, а с другой стороны, каким хладагентом заполнен термобаллон и управляющий тракт ТРВ…

Тип хладагента, заполняющего управляющий тракт ТРВ, всегда указан на верхней крышке мембранного узла, иногда в виде цветного кода (обычно желтый цвет означает R12, зеленый – R22 и фиолетовый – R502).

Однако распространение новых хладагентов может несколько осложнить ситуацию потому что некоторые из них (особенно переходные смеси типа HCFC которые не требуют замены ТРВ) могут работать без проблем с использованием ТРВ не предназначенных для роботы совместно с этими хладагентами!

Если наименование хладагента не указано на установке и вы сомневаетесь, к какому типу он относится (хорошим способом определения вида хладагента является соотношение между давлением и температурой), никогда не стесняйтесь спросить у клиента, который располагает необходимой документацией на установку и, как правило, очень хорошо знает ее историю.

Механическое заклинивание штока ТРВ и его заедание при открытии

Эта неисправность может иметь чисто механическую причину и тогда следует просто заменить ТРВ Однако, она может быть вызвана также загрязнениями холодильного контура присутствием влаги, грязи или посторонних частиц, которые налипают на подвижные части (в некоторых крайних случаях внутренние поверхности ТРВ могут становиться клейкими и прилипать к пальцам).

В случае нагрязненного контура ремонтник не должен удовлетворится очисткои ТРВ и заменой фильтра-осушителя.

Он должен подумать о нежелательных последствиях такого загрязнения (в особенности для компрессора) и провести проверку масла на содержание в нем кислоты.

В том случае, если результаты проверки будут положительными, он должен предпринять все необходимые меры для полной очистки системы, иначе компрессор (герметичный или бессальниковый) имеет серьезные шансы быстро выйти из строя.

Закупорка фильтра на входе в ТРВ

Как и предшествующая неисправность, эта аномалия (к счастью, довольно редкая) означает, что холодильный контур крайне загрязнен, а фильтр-осушитель неэффективен Следует предпринять те же меры, что и в предыдущем случае.

Аномальное падение давления конденсации

Мы видели, что производительность ТРВ в значительной степени определяется давлением в магистрали на входе в ТРВ.

Когда наружная температура падает, падает также и давление конденсации, и тогда система регулировки конденсатора с воздушным охлаждением должна поддерживать значение дав- « ления конденсации в разумных пределах.

Какими бы ни были причины отсутствия такого регулирования (неисправность системы регулировки давления конденсации, плохая настройка…), если давление жидкости на входе в ТРВ падает, количество жидкости, которое способен пропустить ТРВ в испаритель также уменьшается, даже если дроссельное отверстие полностью открыто.

Как спедствие количество паров, производимых испарителем сильно уменьшается. вызывая падение давления кипения что сопровождается всеми признаками низкой производительности ТРВ (смотри рисуноу 14.10).


Рис. 14.10

Следовательно, главное — это при любой наружной температуре постоянно поддержи вать на входе в ТРВ высокое давление способное обеспечить на выходе из него нормальную подпитку испарителя жидким хладагентом.

Примечание. Однако, некоторые неопытные ремонтники, столкнувшись с падением давления конденсации, имеют тенденцию слишком легко пользоваться регулировочным винтом ТРВ вращают его как попало, что неизбежно приводит к разрегулированию установки.

В связи с этим, нам представляется полезным еще раз напомнить, что ТРВ не предназначен для регулировки давления кипения, что настройка ТРВ является трудоемкой и сложной операцией (чтобы сбить настройку иногда достаточно повернуть винт всего на 1/8 оборота) и что для прямого воспроизведения перегрева достаточно зажать термобаллон в ладони вместо того, чтобы бестолково крутить винт настройки ТРВ (смотри рисунок 14.11).


Рис. 14.11

Малое отверстие диафрагмы распределителя

Некоторые модели испарителей, главным образом предназначенные к использованию в торговом холодильном оборудовании, изначально снабжены жидкостным распределителем с взаимозаменяемой сменной диафрагмой, которую можно извлечь из питателя после его демонтажа, удалив стопорное кольцо (смотри рисунок 14.12).


Рис. 14.12

Номер отверстия выгравирован на корпусе диафрагмы, чтобы с уверенностью идентифицировать ее (чем больше номер диафрагмы, тем больше диаметр ее отверстия). Такая конструкция сменной диафрагмы позволяет в зависимости от требуемой температуры кипения (охлаждение или заморозка) и типа используемого хладагента (R12, R22, R134a, R404A, R502…) подобрать производительность испарителя и питателя в соответствии с условиями работы установки.

Метод регулировки заключается в том, что для более низких потребных значений температуры кипения устанавливают диафрагму с большим диаметром отверстия. Кроме того, для одинаковых условий работы, установка на R12 (или на R134a) требует диафрагму с более значительным диаметром, чем установка на R22 (или на R404A).

Как правило такие испарители имеют диафрагму для R12 (R134a), установленную на заводе-изготовителе, но зачастую они снабжаются также запасной диафрагмой для R22 (R404A), вложенной в мешочек внутри упаковки испарителя и входящей в комплект поставки.

Ее можно использовать при необходимости заправки контура другим хладагентом, причем в конструкторской документации указаны номера отверстий, пригодных для данной модели испарителя, используемого хладагента и требуемой температуры кипения.

Если распределитель оборудован диафрагмой с малым отверстием, расход жидкости будет пониженным даже в случае полного открытия ТРВ и установка будет иметь все признаки, присущие низкой производительности ТРВ.

Корпус ТРВ более холодный, чем термобаллон

Эта проблема может возникнуть в том случае, если в термобаллоне и управляющем тракте мало жидкости.

Термобаллон ТРВ неправильно установлен

Установка снабжена регулятором давления в картере (пусковым регулятором), но ТРВ находится под действием ограничителя максимального рабочего давления (МОР), иначе называемого защитой мотора от перегрузки (смотри рисунок 14.13).


Рис. 14.13

Небольшой трехходовой злектроклапан управляет большим ТРВ

Схема монтажа этого довольно специфичного варианта представлена на рисунке 14.14. Этот вариант встречается, когда жидкостная магистраль имеет очень большой диаметр, то есть когда холодопроизводительность установки сравнительно высокая (порядка многих десятков киловатт).

Рис. 14.14

Особенности небольших систем

Особенности расширительных устройств, используемых в малых холодильных установках (домашние холодильники, бытовые индивидуальные кондиционеры, небольшие тепловые насосы, смотри рисунок 14.15).


Рис. 14.15

ooopht.ru

8. Терморегулирующий вентиль.

 8. Терморегулирующий вентиль.

Рассмотрим рис. 8.1, иллюстрирующий изменение расхода воды через поливальный шланг    Я в зависимости от давления в подводящей магистрали.

В обоих случаях вода вытекает из шланга в атмосферу.
Однако очевидно, что массовый расход воды Ml при давлении в магистрали 3 бара больше, чем расход М2’при давлении I бар.

Следовательно, можно сделать вывод о том, что при падении давления в подводящей магистрали (уменьшении перепада АР по отношению к атмосферному давлению) расход воды, вытекающей из шланга, падает
Точно также падает расход жидкости через данный ТРВ, когда перепад давления между входом в ТРВ и выходом из него уменьшается, и, наоборот, при повышении перепада давления расход возрастает.
Но чем больше возрастает расход жидкости хладагента через ТРВ, тем больше увеличивается его производительность, повышая мощность установки.

Не путайте производительность ТРВ с холо- допроизводительностью и поглощающей способностью испарителя.

Производительностью ТРВ называют максимальный расход, который способен пропускать данный элемент при фиксированном перепаде давления АР и полностью открытом отверстии.
Следовательно, производительность зависит, в частности, от диаметра проходного сечения сменного клапанного узла (патрона), установленного внутри ТРВ. Эта зависимость иллюстрируется схемой на рис. 8.2.

Проходное сечение В, имея больший диаметр, чем проходное сечение Ь, позволит при одном и том же перепаде давления
пропускать больший расход жидкости.
Следовательно, ТРВ, оснащенный клапанным узлом с проходным сечением В, будет иметь большую производительность, чем тот же ТРВ, оснащенный патроном сечения Ь.

Конечно, производительность ТРВ должна быть как минимум равна холодопроизводительности испарителя (ТРВ должен пропускать столько же жидкости, сколько может выкипеть в испарителе).

В качестве примера рассмотрим данные таблицы 8 1 по выбору ТРВ для установки на R22 с номинальной холодопроизводительностью 3,5 кВт.
Для данного проходного сечения производительность ТРВ указана в зависимости от температур кипения (to) и конденсации (tk):


Точка 1: ТРВ с производительностью 3,32 кВт при tk = 50°С и to = 0°С
(перепад давления АР = 18,4 – 4 = 14,4 бар).
Точка 2: ТРВ с производительностью 2,88 кВт при tk = 35°С и to = 0°С
(перепад давления АР = 12,5 – 4 = 8,5 бар).
Точка 3: ТРВ с производительностью 2,53 кВт при tk = 35°С и to = 10°С
(перепад давления АР = 12,5 – 5,8 = 6,7 бар).

Таким образом, для постоянной температуры кипения 0°С производительность падает с 3,32 до 2,88 кВт при снижении перепада АР с 14,4 бар (точка 1) до 8,5 бар (точка 2), то есть примерно на 13 %.
С другой стороны, при постоянной температуре конденсации 35 °С производительностьТРВ падает с 2,88 до 2,53 кВт при снижении перепада АР с 8,5 бар (точка 2) до 6,7 бар (точка 3), то есть примерно на 12 %.

Следовательно, для одного и того же ТРВ располагаемая производительность главным образом зависит от рабочего перепада давления АР.

В общем случае ТРВ маркируются (обозначаются) по их производительности. Большинство разработчиков ТРВ включают в обозначение номинальную производительность ТРВ, указывающую значение этой величины (часто в тоннах холода США) для определенных условий работы (например, +5°/+32°С при переохлаждении 4 К).

Так, например ТРВ фирмы DANFOSS марки ТЕХ5-3 имеет номинальную производительность 3 тонны, фирмы SPORLAN марки GFE2C – 2 тонны, фирмы ALCO марки TIE4HW – 4 тонны.

Заметим, что номинальная производительность указывает только порядок величины, а конкретное ее значение, которое будет реализовано на практике, определяется рабочим перепадом давления и паспортом ТРВ, позволяющим установить точное значение производительности для данного диаметра проходного сечения в зависимости от условий работы.

 8.2. ЗАМЕЧАНИЯ ПО ПОВОДУ ПУЛЬСАЦИЙ ТРВ

Рассмотрим схему (рис. 8.3), на которой изображен испаритель, запитанный через ТРВ. Представим, что испаритель снабжен двухканальным регистратором температуры, который  измеряет:

1) Температуру термобаллона ТРВ (первый канал).

2) Температуру парожидкостной смеси на .ыходе из ТРВ (второй канал), то есть температуру кипения.
Следовательно, разница между этими двумя характеристиками, дает нам величину перегрева.
Рассмотрим зарегистрированные значения этих величин (разница во времени между двумя вертикальными линиями составляет 1 минуту).


В момент времени to хорошо отрегулированный ТРВ обеспечивает перегрев 7 К. Установка работает совершенно стабильно с требуемым перегревом.
В момент времени tl откроем ТРВ на один оборот винта. Сразу можно заметить, что очень быстро ТРВ выйдет на пульсирующий режим работы с изменением перегрева от 2 до 14 К.

Наблюдая за манометром НД, вы увидите, что давление кипения будет также пульсировать. почти в точности совпадая по частоте с изменениями кривой 2
В момент il откроем ТРВ еще на один оборот.

Очень быстро частота пульсаций возрастает и перегрев будет колебаться между 0 и 12 К.
Дотронувшись рукой до всасывающего трубопровода, вы отчетливо ощутите периодические гидроудары, которые передаются в компрессор. Более того, корпус компрессора станет аномально холодным.
Итак, открытие ТРВ с каждым оборотом регулировочного винта повышает его производительность.

Пульсации ТРВ указывают на то, что пропускная способность ТРВ гораздо выше производительности испарителя.

                                                        ОТРИЦАТЕЛЬНЫЕ АСПЕКТЫ ПУЛЬСАЦИЙ.

Поскольку температура кипения пульсирует, это автоматически приводит к пульсациям низкого давления и. под воздействием этого, пульсируют значения всех основных параметров установки:

►    Пульсирует температура воздушной струи, проходящей через испаритель, потому что непрерывно меняется холодопроизводительность (заметим, что холодопроизводи-тельность меняется с изменением количества жидкости, находящейся в испарителе).
►   Пульсирует высокое давление, потому что непрерывно меняется холодопроизводительность и, как следствие, меняется количество хладагента, поступающего в конденсатор.
►    Пульсирует сила тока, потребляемая компрессором, потому что постоянно меняются высокое и низкое давления.
Легко понять, что оставлять установку в состоянии пульсации крайне нежелательно!

ВНИМАНИЕ. Если вы и дальше будете открывать ТРВ, вращая регулировочный винт, пульсации в конце концов прекратятся, низкое давление стабилизируется, а температуры 1 и 2 будут иметь одинаковое значение.
В этом случае компрессор будет постоянно работать в условиях, когда на входе в него имеются неиспарившиеся частицы жидкости (правда неизвестно, сколько времени он проработает в таком режиме, который может привести к очень серьезным неисправностям).

 8.3. МЕТОД НАСТРОЙКИ ТРВ

В настоящее время имеется большое количество документов и технических инструкций разработчиков, в которых подробно описывается конструкция ТРВ, их работа, технология их подбора и монтажа.
В большинстве документов указывается, что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ. если по какой-либо причине поя   <тся необходимость дополнительной регулировки?
Мы рекомендуем следующий метод. Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик которого следует укрепить на термобаллоне ТРВ (см. рис. 8.4).


Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме близкой к температуре отключения компрессора
(настройка, обеспечивающая стабильность при температуре 25 °С, может привести к пульсациям при температуре 20°С).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технология настройки заключается в том, чтобы сначала вывести ТРВ на предельный режим, при котором начнутся пульсации.

►   Для этого при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.
►   Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Внимание. Никогда не вращайте регулировочный винт больше, чем на один оборот (предельный режим, приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота). После каждого изменения настройки (поворота регулировочного винта) следует выждать не менее 15 минут (в дальнейшем это позволит вам сэкономить время на настройку).

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).
В этом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

ПРИМЕЧАНИЕ. В течение настройки давление конденсации должно оставаться относительно стабильным, но его величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

При настройке могут возникнуть две сложности:
1)   Вам не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя.
В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.
2)   Вам не удается исключить пульсации после их возникновения. Это означает, что ТРВ, будучи даже полностью закрытым, сохраняет производительность выше, чем производительность испарителя.
В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, когда перегрев достигает слишком большого значения (это наступает, когда ТРВ практически перекрыт, давление кипения аномально малое и полный перепад температур Дбполн слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

ПРИМЕЧАНИЕ. Аномалии, которые могут вызывать перечисленные выше проблемы, возникающие при настройке ТРВ (слишком малый или слишком большой ТРВ, плохая подпитка жидкостью, нехватка хладагента в контуре, нехватка производительности испарителя), более подробно будут проанализированы при детальном изучении каждой из этих неисправностей.

Здесь же мы сформулируем основной вывод из данного раздела: настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому не приступайте к процедуре настройки, не будучи абсолютно уверенными в глубоком понимании наших рекомендаций.

Во всех случаях, когда вы приступаете к настройке ТРВ, обязательно в качестве меры предосторожности заметьте начальную настройку (начальное положение регулировочного винта) и точно подсчитывайте число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

 8.4. УПРАЖНЕНИЕ

Какая из двух схем, приведенных ни рис. 8.5, представляется вам более удачной? Почему?

                                                                                  Решение

В варианте 2 зону перегрева испарителя обдувает уже охлажденный воздух.
Напротив, в варианте 1 воздух, который обдувает зону перегрева, имеет более высокую температуру.
Мы уже изучили влияние температуры воздуха на заполнение испарителя и на холодопро-изводительность (см. раздел 7, рис. 7.1).
Следовательно, схема 1 обеспечивает лучшее заполнение испарителя и является более предпочтительной с точки зрения улучшения холодопроизводительности.

vmestogaza.ru

Настройка ТРВ – Справочник химика 21

    Настройку ТРВ на начало открытия клапана по заданному перегреву пара осуществляют регулированием степени сжатия пружины с помощью винта, уплотняемого сальником. Подмембранная полость отделяется от выходной полости ТРВ также сальником. [c.97]

    Принципиальная схема питания фреонового испарителя по перегреву приведена на рис. IV.3. Особенностью этих схем является настройка ТРВ для обеспечения нормальной работы системы. [c.63]


    Опыт показывает, что после изменения настройки ТРВ нужно выждать не менее 20 минут, чтобы установка вышла на новый режим. [c.24]

    Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме  [c.31]

    ПРИМЕЧАНИЕ аномалии, которые могут обусловить перечисленные выше проблемы, возникающие при настройке ТРВ (слишком малый или слишком большой ТРВ, плохая подпитка жидкостью, нехватка хладагента в контуре, нехватка производительности испарителя), более подробно будут проанализированы при детальном изучении каждой из этих неисправностей. [c.32]

    Здесь же мы сформулируем основной вывод из данного раздела настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому не приступайте к процедуре настройки, не будучи абсолютно уверенным, в глубоком понимании наших рекомендаций. [c.32]

    Во всех случаях, когда вы приступаете к настройке ТРВ, обязательно в качестве меры предосторожности заметьте начальную настройку (начальное положение регулировочного винта) и точно подсчитывайте число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота). [c.32]

    Вспомните, что оптимально настроенный ТРВ должен обеспечивать минимально возможный перегрев, который можно поддерживать, не допуская возникновения пульсаций, при этом охлажденный воздух должен иметь температуру, наиболее близкую к температуре, при которой термостат отключает компрессор (см. раздел 8.3. Метод настройки ТРВ). [c.50]

    Никогда не меняйте настройку ТРВ, если только вы не уверены в абсолютной справедливости вашего диагноза. [c.50]

    Однако некоторые неопытные ремонтники, столкнувшись с проблемой падения давления конденсации, имеют тенденцию слишком легко пользоваться регулировочным винтом ТРВ, вращают его кстати и некстати, что неизбежно приводит к разрегулированию установки. В связи с этим нам представляется полезным еще раз напомнить, что ТРВ не предназначен для регулировки давления испарения, что настройка ТРВ является трудоемкой и сложной операцией (чтобы сбить настройку иногда достаточно повернуть винт на 1/8 оборота), и что для прямого воспроизведения перегрева достаточно зажать термобаллон в ладони, вместо того, чтобы бестолково крутить винт настройки ТРВ (см. рис. [c.53]

    Поэтому настройка ТРВ на небольшой перегрев, угрожая возможностью появления периодических гидроударов (самых легких), угрожает также опасностью аномальных выбросов масла в контур. [c.202]

    Допустим, что управляющий тракт ТРВ с внутренним уравниванием давления (который представлен на рис. 46.1), заправлен Р22 и используется в составе кондиционера, также работающего на Р22. ТРВ настроен таким образом, чтобы его производительность в точности соответствовала производительности испарителя (см. раздел 8.3. Метод настройки ТРВ). [c.230]

    Напротив, когда температура воздуха на входе в испаритель падает, жидкость испаряется менее интенсивно и точка А сдвигается к термобаллону. В результате перегрев и температура термобаллона уменьшаются. Сила открытия РЬ снижается, что нарушает равновесие и приводит к закрытию ТРВ. Точка А вновь отодвигается внутрь испарителя до тех пор, пока не установится новое положение равновесия, соответствующее настройке ТРВ на перегрев 7°С. [c.230]

    Что же из этого следует Априори вы можете думать, что достаточно изменить настройку ТРВ таким образом, [c.231]

    Возьмем случай, когда компрессор дает только 33% от полной производительности за счет того, что в работе находится только один из трех (№2) цилиндров (см. рис. 46.3). Настройка ТРВ с внутренним уравниванием обеспечивает перегрев, равный 7°С. [c.231]

    И наоборот, если настройка ТРВ на заданный перегрев была произведена тогда, когда компрессор давал 100% своей производительности, по мере ее падения, обусловленного работой системы регулирования, расход хладагента будет падать, потери давления уменьшаться, обусловливая снижение перегрева. Гидроудар обеспечен  [c.232]

    Для повышения экономичности работы фреоновых агрегатов компрессоры должны работать сухим ходом при высоком перегреве всасываемых паров, достигаемом за счет теплообменников. Для достаточно высокого перегрева паров, засасываемых из испарителя, и устранения влажного хода компрессора большое значение имеет также надлежащая настройка ТРВ. [c.252]

    Неправильная настройка ТРВ на жидкостном трубопроводе или недостаточно фреона в системе [c.459]

    Проверить настройку ТРВ путем ручной регулировки, попытаться получить нормальный перегрев, если невозможно, то добавить фреон в систему [c.459]

    Наиболее существенным параметром настройки, определяющим оптимальный режим, является перегрев пара на выходе из испарителя, т. е. настройка ТРВ. Для исследования влияния этого фактора на отклонение от оптимального режима и на надежность машин мы провели испытание машины ФАК-0.7Е без теплообменника со шкафом Т-60 на различных ТРВ типа ТРВ-2М и ТМ-2Ф. Сущность методики заключалась в том, чтобы при различной настройке прибора (открытие ТРВ на один—четыре оборота) и соответствующем этой настройке перегреве добиться в каждом из опытов поддержания требующейся температуры за счет изменения к. р. в. машины. [c.91]

    С за счет неправильной настройки ТРВ (при повороте шпинделя на один оборот в ту или иную сторону) увеличивает расход электроэнергии почти на 50%—с 1,8 до 2,8—3,1 кВт-ч/сутки. Узкие границы оптимальной настройки ТРВ приводят к тому, что при эксплуатации машины часто работают не в оптимальном режиме, а это, как уже указывалось, увеличивает к. р. в. и соответственно интенсивность отказов. [c.95]

    Отказы второй группы, связанные с необходимостью дополнительного регулирования мембранных ТРВ, составляют примерно 15—20%/год. Исследование этого вопроса (см. стр. 95) показало, что трудно осуществить точное регулирование мембранных ТРВ незначительный поворот регулировочного шпинделя очень сильно изменяет установленный перегрев, а это затрудняет правильную первоначальную настройку и уменьшает ее стабильность. Кроме того, как было показано на стр. 95, статическая характеристика ТРВ плохо согласуется с изменением температуры и давления конденсации изменение давления конденсации часто требует изменения настройки ТРВ. [c.186]

    Настройка терморегулирующего вентиля. В машинах без теплообменника, когда шкаф не загружен продуктами, настройка ТРВ должна обеспечить перегрев в испарителе 6—7 °С. С увеличением тепловой нагрузки среднее значение перегрева при той же настройке возрастает до 10—12 °С, оставаясь при этом оптимальным. При наличии теплообменника оптимальный перегрев равен 2—3 °С, что практически соответствует 100 %-ному заполнению испарителя парожидкостной смесью хладагента. Температура пара на выходе из теплообменника при этом ( вс) на 10—15 °С ниже температуры конденсации. [c.249]

    Настройка ТРВ па заданную температуру проводится с помощью ниппеля 14, меняющего степень натяжения пружины 10 силового сильфона 8. [c.231]

    Настройка ТРВ производится с помощью винта 11, при вращении которого изменяется усилие пружины 10. Защитный кол- [c.232]

    Выбор настройки ТРВ и места крепления термопатрона [c.255]

    Рассмотрим первый случай. Для правильного выбора места крепления термопатрона и начальной настройки ТРВ необходимо знать статическую характеристику испарителя, т. е. зависимость оптимального перегрева от тепловой нагрузки. Методики расчета такой характеристики в настоящее время не существует, но получить ее экспериментально не сложно. Поясним это на примере исследования работы сухого испарителя с ТРВ при цикличной работе компрессора машины без теплообменника [158]. Охлаждаемый объект—шкаф емкостью 1,25 м . Температура в помещении, где был установлен шкаф, поддерживалась постоянной (19—20°С). Заданная температура в шкафу регулировалась при помощи реле температуры, которое периодически включало и выключало компрессор. Чувствительный патрон ТРВ-2М был укреплен на всасывающей трубке при выходе из испарителя (в охлаждаемом помещении). Каждую минуту замерялась температура на выходе из испарителя / .в и температура кипения /о (по манометру). Значение перегрева за период работы определялось как среднее значение отдельных замеров в каждую минуту (рис. 112). Как видно из верхнего графика, за время работы компрессора перегрев не успевал принимать установившееся значение. После остановки компрессора жидкость стекает в картер компрессора и испаряется. Давление в испарителе быстро возрастает и в точке 1 перегрев падает до величины закрытия клапана. Далее перегрев становится [c.255]

    Статическая характеристика ТРВ оказалась такой, что оптимальные значения перегрева во всех трех режимах были достигнуты при одной и той же первоначальной настройке ТРВ (трех оборотах шпинделя). Это показывает, что коэффициент усиления данного ТРВ, равный 20%/°С (номинальная производительность—2000 ккал/ч — достигается изменением перегрева на 5°С), [c.257]

    Выбор настройки ТРВ и места крепления термопатрона Косвенные методы регулирования заполнения испарителя Выбор регулятора для заполнения испарителя. … Регулирование давления конденсации. …… [c.350]

    Если проверочный расчет покажет, что выбранные испарители не обеспечивают нужный температурный режим в камерах, то это значит, что вместо одного в этом случае нужно установить два агрегата или дать различную настройку ТРВ. [c.281]

Таблица I—9 Параметры настройки ТРВ, реле давления или реле температуры
    Настройка ТРВ на рабочее давление МПа (кгс/см ) [c.46]

    Выше обычного То же Обычное Частично оттаял То же Отпотевает картер Обмерзает всасывающая линия ТРВ неправильно настроен Клапан ТРВ застопорился в открытом положении ТРВ не закрывается плотно Подогреть чувствительный элемент. Если это поможет, изменить настройку ТРВ Отремонтировать или заменить или заменить ТРВ То же [c.228]

    Подогреть чувствительный патрон. Если это поможет, изменить настройку ТРВ [c.231]

    Когда охла>ндаемый воздух приходит к испарителю с начальной температурой 25°С, для того, чтобы обеспечить перегрев паров 7°С, достаточно участка трубопровода испарителя длиной А-В. При этом давление испарения составляет 5,2 бар (то есть давление насыщенных паров R22 при 7°С), что эквивалентно полному перепаду температуры АОполн. (разность между температурой воздуха на входе tae и температурой испарения to) 18°С, величине,принятой для кондиционеров. Поскольку установка работает нормально, температура окружающей среды падает и, следовательно, температура воздуха на входе в испаритель также уменьшается. Предположим, что через некоторое время температура воздуха на входе в испаритель понизилась до 20°С. Поскольку настройка ТРВ не меняется, он продолжает поддерживать перегрев почти постоянным и равным 7°С [c.26]

    Напомним, что заправка может считаться нормальной только тогда, когда испаритель заполнен жидкостью в достаточной степени, то есть перегрев находится в нормачьных пределах (для испарителя с прямым циклом расширения это, как правило, составляет от 4 до 7°С), что предполагает правильную настройку ТРВ и, следовательно, поддержание давления конденсации на должном уровне, поскольку от этого зависит производительность ТРВ. Более того, мы видим, что благодаря колебаниям уровня жидкости в ресивере температура воздуха на входе в испаритель не должна быть ни слишком высокой, ни слишком низкой по отношению к нормальному эксплуатационному диапазону, предусмотренному для функционирования данной установки. [c.62]

    ТРВ должен быть предназначен для конкретного типа HF (например, если используемый хладагент -R134a, ТРВ должен быть предназначен именно для R134a). Другие принципы подбора, монтажа и настройки ТРВ такие же, как для обычных хладагентов. [c.332]

    Рассмотрим схему автоматизации фреоновых машин холодопроизводительностью 3500—4500 Вт с водяным охлаждением (рис. 124, а). Эти машины рассчитаны на непосредственное охлаждение одной или двух камер. Средняя температура в камерах поддерживается цикличной работой компрессора, пуск и остановка которого осуществляется реле низкого давления РДн (на рис. 124, б входит в блок РД). РДд настраивают с таким расчетом, чтобы средняя температура кипения (за весь цикл) была достаточно низкой и обеспечивала бы поддержание требуемой температуры в наиболее холодной камере. Если во второй камере при этом требуется поддерживать более высокую температуру, то можно уменьшить охлаждающую поверхность в ней путем недоза-полнения испарителя, что достигается настройкой ТРВ на поддержание более высокого перегрева. [c.244]

    Давление кипения во фреоновом испарителе 1,86 ата, температура кипения — 15°. В точке / испарителя вся жидкость превращается в пар, в точке II перегрев пара достигает 5° (температура —10°). При температуре —10° давление в термобаллоне и термочувствительной системе равно 2,23 ата. При этом на мембрану сверху действует давление на 0,37 кг1см больше, чем снизу. Это уравновешивается усилием пружины (в данном примере 0,22 атм), которое зависит от настройки ТРВ и от положения клапана. [c.177]

    При уменьшении тепловой нагрузки испарителя это равновесие нарушится. Парообразование будет происходить менее интенсивно, поэтому количество жидкости в испарителе возрастет и перегрев пара уменьшится. Тогда температура термобаллона и, соответственно, давление в термочувствительной системе понизятся и клапан ТРВ приблизится к седлу. Наконец, нагрузка может уменьшиться настолько, что усилия, действующие на мембрану, сбалансируются при закрытом положении клапана давление сверху составит 2,08 ата (при температуре термобаллона —12°), т. е. будет равно сумме давлений снизу. Подача жидкости в испаритель прекратится. Такое значение перегрева называется закрытым перегревом. Эта величина (в рассмотренном примере 3°) зависит от настройки ТРВ чем больше натяжение пружины, тем больше закрытый перегрев и меньше заполнение испарителя жидкостью. [c.178]

    Схема стенда, позволяющая определять влияние настройки ТРВ на работу машины, показана на рис. 33. Температура воздуха в помещении, где испытывается холодильный шкаф с ТРВ, поддерживается цикличным включением ТЭНа от реле температуры 1РТ. Температура в охлаждаемом объекте также поддерживается постоянной (независимо от настройки ТРВ) путем цикличного включения компрессора от реле температуры 2РТ. Отклонение от оптимального перегрева автоматически приводит к увеличению к. р. в. компрессора. Теплообменник /ГО служит для определения количества циркулирующего агента, для чего измеряют температуру нагревания агента ( — б) и подводимую к ТЭНу электрическую мощность. Теплообменник 2Т0 предназначен для охлаждения фреона, чтобы исключить влияние подогрева в 1Т0 на работу машины. Одновременно, зная расход воды, разность температур [c.91]

    Схема машины МКВ4-1-2. Машина МКВ4-1-2, как и другие машины с агрегатом АВФВ4, предназначена для охлаждения двух камер. Температура в холодной камере поддерживается включением и остановкой компрессора от камерного реле температуры РТ (рис. 129), а в другой — степенью заполнения испарителя, т. е. настройкой ТРВ на больший перегрев. [c.233]

    Первоначальную настройку терморегулирующего вентиля рекомендуется осуществлять с помощью ручного регулирующего вентиля, подключенного параллельно. С этой целью закрывают запорный вентиль и добиваются устойчивой работы холодильной установки с заданной величиной перегрева паров на выходе из испаригеля при ручном регулировании. После этого закрьшают ручной регулирующий вентиль и переходят на работу с терморегулирующим вентилем из полностью закрытого положения, изменяя настройку, постепенно открывают терморе-. гулирующий вентиль и добиваются заданной величины перегрева. При нормальной работе корпус прибора должен обмерзать только со стороны выходного штуцера. Если при настройке ТРВ не удается воспроизвести режим, достигнутый при ручном регулировании, то считают, что терморегулирующий вентиль подобран или смонтирован неправильно. Величину перегрева паров в месте крепления термобаллона обычно устанавливают равной 1,5—2°С (не более 5—1°С). [c.212]


chem21.info