Схема компрессор холодильника: как с конденсатором, включения напрямую

Содержание

как с конденсатором, включения напрямую

Для циркуляции хладагента в холодильных установках используются насосные блоки с приводом от электрического двигателя. Знание схемы подключения компрессора холодильника понадобится начинающему мастеру или пользователю, самостоятельно обслуживающему холодильное оборудование. Корректная коммутация позволит уточнить пригодность мотора к эксплуатации, но точную причину поломки определит только специалист.

Подключение по инструкции

Электрический двигатель, используемый для привода насоса, оснащается двойной обмоткой возбуждения. Для старта оборудования требуется повышенная мощность, поэтому в конструкции мотора предусмотрена пусковая обмотка. После начала работы происходит автоматическое переключение питания на рабочую обмотку, что обеспечивает снижение энергопотребления. Дополнительные реле, поддерживающие требуемый температурный фон, расположены до корпуса компрессора.

Чтобы подключить компрессор холодильника по заводской схеме, потребуется использовать кабель, оснащенный штепсельной розеткой. Провода подводятся к выводам на корпусе реле, поскольку для питания используется переменный ток, то полярность соединения не учитывается. Для обеспечения надежного контакта на кабелях устанавливаются клеммы, тип элементов зависит от модификации и производителя реле. После включения штепселя в розетку мотор должен заработать, если пуск закончился неудачей, то следует начать проверку компонентов в цепи питания.

Как подключить без реле

В конструкции оборудования используется реле, которое переключает подачу тока в зависимости от режима работы. Изделие обеспечивает защиту обмоток электродвигателя, при его поломке или отсутствии нормальный пуск мотора невозможен. Владелец оборудования может имитировать работу реле, что позволяет проверить работоспособность компрессора. Эксплуатировать холодильник с отсутствующим реле категорически запрещается.

Для включения оборудования необходимо обеспечить подачу переменного тока напряжением 220 В на обе обмотки мотора. Для подсоединения изделия требуется медный кабель сечением не менее 0,75 мм² (допускается использование монолитного или многожильного провода). Для обеспечения контакта на концы провода устанавливаются соединительные клеммы, которые фиксируются припоем или обжатием специальным инструментом. Коммутация питания производится к выводам общей точки и рабочей обмотки (расположение элементов указывается на корпусе компрессора).

На части компрессоров для обеспечения доступа к контактным элементам потребуется снять специальную емкость из пластика, в которую собирается конденсат и талая вода.

Для подачи короткого импульса на пусковую обмотку используется электротехническая отвертка (с рукояткой из специального пластика) или отдельный тумблер. Кнопка помещается в разрыв провода, которым соединяются выводы обмоток. При исправных обмотках и подшипниковых опорах мотор начинает работать, пусковая обмотка отключается удалением отвертки или повторным нажатием на переключатель.

Как подключить без конденсатора

Классический конденсатор в холодильном оборудовании используется для охлаждения и преобразования газообразного хладагента в жидкую фазу. Насос хладагента допускает кратковременную работу без конденсационного блока, но длительно эксплуатировать агрегат не рекомендуется (из-за отсутствия подачи масла). В самом компрессоре встречается электролитический конденсатор, обеспечивающий дополнительный импульс тока в момент пуска оборудования. Конденсатор использовался в холодильниках, выпущенных в 60-70-х гг. прошлого столетия.

Техникой какого производителя пользуетесь дома?

  • Bosch
  • Samsung
  • LG
  • Karcher
  • Philips
  • Indesit
  • Thomas
  • Atlant
  • Electrolux
  • iRobot
  • Ariston
  • Dyson
  • Vitek
  • Beko
  • Midea
  • Haier
  • Candy
  • iLife
  • Zelmer
  • Redmond
  • Siemens
  • Kuppersberg
  • Xiaomi
  • Gorenje
  • Miele
  • Whirlpool
  • Hansa
  • Liebherr
  • DeLonghi
  • Scarlett
  • Zanussi
  • BBK
  • AEG
  • Smeg
  • Nord

Poll Options are limited because JavaScript is disabled in your browser.

Конденсатор работает совместно с управляющим реле, размещается в разрыве между линией питания и пусковой обмоткой. При проверке работоспособности мотора можно подключить питание напрямую, обойдя дополнительные компоненты цепи. В оборудовании, выпущенном после 90-х гг., элемент не используется. Конденсатор применяется для пуска 3-фазных электродвигателей, подключаемых к бытовой сети переменного тока. Установленный элемент имитирует недостающую фазу, но в бытовом холодильном оборудовании такие двигатели не используются.

Если в цепи имелся конденсатор, то он удаляется (выпаивается), последующий пуск производится через штатное реле.

Если мотор не реагирует на подачу питания, то потребуется демонтировать реле. Если при подаче питания из корпуса компрессора доносится монотонное гудение, то причиной поломки являются заклинившие подшипники качения или сломанный поршневой насос. Если мотор не работает и нет постороннего гула, то причину утраты работоспособности следует искать в обрыве проводов внутри компрессора. Подобный агрегат не ремонтируется, а подлежит утилизации.

Проверка правильности подключения

Проверка корректности подключения компрессора холодильной установки выполняется в соответствии с монтажной схемой, прилагаемой к инструкции по эксплуатации. Один провод, идущий от розетки, подключается напрямую к общей точке компрессора. Второй шнур проходит через блок управления холодильником, а затем подсоединяется к реле. Внутри корпуса устройства расположен биметаллический предохранитель, от него питание подается к контактным пластинам, которые распределяют энергию между обмотками (в зависимости от режима работы).

При проверке состояния цепей используется тестовый прибор, позволяющий определить обрывы электропроводки. Дополнительным тестом является контрольный замер давления, создаваемого поршневой группой насоса. Манометр устанавливается к напорной магистрали (предварительно отрезанной от трубок подачи хладагента), затем в систему заправляется газ. После подачи питания давление в системе должно составить не менее 6 МПа. Если давление ниже, то насос считается неисправным и подлежит замене (вне зависимости от состояния электрического привода).

Тестирование электрических цепей компрессора не всегда позволяет найти причину поломки холодильника. При использовании устройств инверторного типа для пуска двигателя необходим электронный блок, который установлен внутри холодильника. Попытки принудительно запустить такой электродвигатель приведут к коротким замыканиям и полной утрате работоспособности. Неработающие установки с электронным управлением и инверторным компрессором рекомендуется обслуживать в специализированных сервисных центрах, оснащенных соответствующим оборудованием.

Читайте также:

  • Чем помыть новый холодильник перед первым использованием
  • Что делать если не отключается холодильник
  • Холодильник Indesit ITF 016 W с низким уровнем шума
  • Встраиваемый двухкамерный холодильник Atlant ХМ 4307-000 с капельным типом разморозки

Рейтинг

( 2 оценки, среднее 2 из 5 )

Понравилась статья? Поделиться с друзьями:

подключение без конденсатора своими руками

Для начала стоит понять, как работает компрессор и какую функцию он выполняет. Суть работы компрессора во всех холодильниках одинакова. Она состоит в том, чтобы откачивать нагретый хладогент с испарителя и нагнетать его в конденсатор, который находится на задней стенке агрегата. Конденсатор охлаждает и сжижает хладогент; после этого он попадает в испаритель и таким образом охлаждает воздух внутри камеры.

Компрессор

Чтобы подключить компрессор холодильника нужно для начала разобраться с его устройством. Хоть суть работы этой части аппарата одинакова во всех холодильниках, схема и устройство их может разниться. Рассмотрим как он устроен на примере компрессора холодильника Атлант.

Холодильник Атлант

Схема компрессора холодильника Атлант:

Большинство компрессоров современных холодильников поршневые. Как видим на фото он состоят из:

  • кожуха мотора-компрессора;
  • крышки кожуха;
  • самого мотора-компрессора;
  • статора;
  • болта крепления статора;
  • корпуса компрессора;
  • цилиндра;
  • поршня;
  • клапанной плиты;
  • коленчатый вал;
  • кривошпильной шейки вала;
  • коренной шейки вала;
  • обоймы кулисы;
  • ползуна кулисы;
  • нагнетательной трубки;
  • шпильки подвески;
  • пружины подвески;
  • кронштейна подвески;
  • подшипника вала;
  • ротора.

Схема компрессора холодильника Атлант

Принцип работы таков: моторчик приводит в движение коленчатый вал, находящийся в корпусе компрессора. С вращением вала, начинает работать поршень, выполняя возвратно-поступательные движения. Таким образом он откачивает хладогент и посылает его в конденсатор. Далее газ через всасывающий клапан попадает в камеру, который открывается при создании разрежения.

Перед тем как подключать компрессор из холодильника своими руками, разберемся со схемой и работой реле компрессора.

Схема подключения реле компрессора холодильника

Функция работы реле состоит в том, что оно запускает двигатель, то есть мотор, благодаря которому и работает компрессор. Для того, чтобы понять, как его подключить, нужно понять из чего он состоит.

Основные элементы пуско-защитного реле можно изобразить схематически:

  • неподвижные контакты;
  • подвижные контакты;
  • шток сердечника;
  • сердечник;
  • нагреватель биметаллической пластины;
  • контакты теплового реле.

Теперь перейдем непосредственно к схеме подключения компрессора холодильника.

Схема подключения

Для этого нам понадобиться тестер, компрессор и пусковое реле. Выставляем тестер на килоомы или же на омы, и замеряем сопротивление между обмотками компрессора (их будет 3). Измерив сопротивление, смотрим, где получилось наименьшее значение – это и будет рабочей обмоткой. Это значит, что именно ее мы и будем подключать к реле и давать на нее 220 вольт.

В результате выходит, что к нашему реле подключено 4 шнура – 2 от конденсатора, и 2 от вилки. Далее подключаем реле непосредственно к компрессору, и включаем вилку в розетку.

Таким образом можно проверить исправность компрессора. С одной стороны мы подключали реле, с другой – есть 3 трубки. Включив компрессор в розетку, из одной из трубок должен пойти воздух, в другие он должен всасываться.

Схема расклинивания компрессора холодильника

Если же после подключение компрессора он не работает, причиной поломки может быть заклинивание механизма. Избежать ее можно не прибегая к помощи ремонтникам. Для этого нужно сделать расклинивание.

Схема расклинивания компрессора

Нам понадобится только приспособление, которое состоит из двух диодов. Следует подсоединить его к обмоткам электродвигателя компрессора и дать на них кратковременное напряжение в течение 3-5 секунд. Затем повторить процедуру через полминуты.

В результате этих действий происходит расклинивание механизма, потому как знакопеременный вращающий момент, возникший на валу электродвигателя, приводит ротор в вибрацию с частотой до 50 Герц. Таким образом вибрация, передающаяся к заклиненным элементам компрессора расклинивает их.

Выполняя данную процедуру, помните, что диоды должны обладать определенными характеристиками:

  • показатель допустимого обратного напряжения более 400В;
  • показатель допустимого прямого тока не ниже 10 А.

 Подключение компрессора холодильника без конденсатора

В составе холодильника конденсатор играет одну из важных ролей. Он существует для теплообмена – отводит конденсирующиеся пары фреона, которые поступают из компрессора, в окружающую среду. Также КПД холодильника, то есть его эффективность работы, повышается до 20% при наличии конденсатора. Хорошая работа конденсатора – залог хорошей работы холодильника.

Компрессор холодильника подключен к конденсатору и через обратную трубку к испарителю. Если же наблюдается пробой конденсатора, то рабочий ток холодильника будет сильно завышен и это может привести к тому, что сгорит компрессор.

Если же Вы решили подключать компрессор холодильника к сети без конденсатора, это может быть только в том случае, когда этот компрессор используется уже в другом назначении. Например, для того, чтобы сделать насос или же применить его для краскопульта.

Схема подключения компрессора из холодильника, чтобы своими руками приспособить его для других приборов, такая же как и при подключении его в составе холодильника (описано выше).

Полное руководство »Производитель промышленных чиллеров из Китая

1. ГЕРМЕТИЧНЫЙ Холодильный компрессор или (компрессор холодильника)

2. Коммерческий холодильный компрессор

2а. Вопрос: Зачем нужна муфта в коммерческом холодильном компрессоре и двигателе?

2б. Вопрос: Какова функция механического уплотнения в холодильном компрессоре?

3. Термостатический расширительный клапан (TEV или TXV)| Дозирующий клапан?

4. Зачем нужна уравнительная линия в термостатическом расширительном клапане (ТРВ) или дозирующем клапане?

5. ФИЛЬТР-ОСУШИТЕЛЬ в холодильной системе

6. Смотровое стекло|Индикатор влажности

7. Теплообменники в холодильной системе

8. Электромагнитный клапан

9. Обратный клапан

а. Разгрузочное устройство холодильного компрессора Предохранительное устройство

б. Компрессор Устройство отключения по высокому давлению Предохранительное устройство

в. Компрессор Устройство отключения по низкому давлению Предохранительное устройство

д. Дифференциал компрессора Давление смазочного масла Предохранительное устройство

11. Как удалить масло из холодильной системы?

12. Почему холодильный компрессор всасывает из картера?

13. Термостаты

14. Предохранительное устройство сброса давления

Существует три типа разгрузочных устройств

15. Система охлаждения: перепускной клапан горячего газа

1.ГЕРМЕТИЧНЫЙ Холодильный компрессор или (компрессор холодильника)

Герметичные компрессоры в основном используются в бытовых холодильниках, двигатель и компрессор заключены в стальной корпус, также известный как герметичный контейнер, в который не могут попасть газ или жидкость или выйти из него. сварочные пломбы, приваренные вокруг контейнера.

Герметичный компрессор имеет прямой привод без муфты и механического уплотнения.

Герметичный компрессор имеет корпус низкого давления, что означает, что внутренняя часть корпуса компрессора подвергается воздействию только давления всасывания, в то время как нагнетание может вызвать опасность стресса внутри компрессора.

Хладагент и компрессорное масло внутри корпуса компрессора полностью соприкасаются с обмотками ротора и статора двигателя . Таким образом, чтобы избежать короткого замыкания в обмотке двигателя, используемый хладагент должен иметь высокую диэлектрическую прочность и быть полностью совместимым с изоляционным материалом.

Электродвигатель напрямую соединен с компрессором одним валом, что позволяет избежать использования какой-либо муфты или механического уплотнения и исключить возможность утечки хладагента в атмосферу.

Коленчатый вал предназначен для циркуляции смазочного масла от насоса ко всем поверхностям подшипников .

Обычный бытовой герметичный компрессор может непрерывно использоваться более 20 лет, но часто по истечении срока службы его переводят на второй режим работы, например, после некоторой модификации его можно использовать в качестве насоса для откачки хладагента, продан и перепроданы или выброшены.

Поскольку двигатель , а также компрессор недоступны для ремонта или обслуживания , выход из строя встроенной обмотки двигателя, такой как короткое замыкание, может привести к разложению хладагента и серьезному загрязнению смазочного масла картера.

Поэтому, чтобы избежать такого повреждения,  внутренние и внешние устройства защиты двигателя отключают питание двигателя в случае любой неисправности.

2. Компрессор коммерческого холодильного оборудования

Компрессор обычно представляет собой поршневой или винтовой компрессор. Он обеспечивает перепад давления и необходимый поток в системе за счет повышения температуры и давления хладагента, тем самым обеспечивая желаемый массовый расход.

Целью компрессора в холодильном цикле является прием сухого газа низкого давления из испарителя и повышение его давления до давления в конденсаторе.

Скорость поглощения тепла испарителем зависит от перевозимых грузов и температуры наружного воздуха.

Иногда грузы/склады находятся недавно в теплом климате, нагрузка на систему охлаждения значительно возрастает.

Таким образом, наиболее крупных компрессоров представляют собой многоблочные компрессоры V-образного типа, снабженные определенным устройством регулирования нагрузки или производительности.

Контроллер нагрузки измеряет температуру и регулирует мощность компрессора, разгружая или отключая один из компрессорных агрегатов.

Для поршневых агрегатов это осуществляется с помощью разгрузочных нажимных штифтов, удерживающих всасывающий клапан в поднятом положении.

2а. Вопрос: Зачем нужна муфта в коммерческом холодильном компрессоре и двигателе?

Муфты используются для соединения большого вала компрессора с валом двигателя компрессора, движущая сила в этих больших агрегатах очень высока.

  • Муфта обеспечивает некоторую гибкость при несоосности валов.
  • Может спасти компрессор при внезапном превышении крутящего момента за счет ограниченного проскальзывания или скручивания.

2б. Вопрос: Какова функция механического уплотнения в холодильном компрессоре?

Механическое уплотнение, навинчиваемое на вращающийся вал компрессора, обеспечивает герметизацию картера, а также сдерживание картерного давления и предотвращает загрязнение извне.

3. Термостатический расширительный клапан (TEV или TXV)| Дозирующий клапан?

Термостатический расширительный клапан действует как регулятор, когда хладагент дозируется от стороны высокого давления к стороне низкого давления системы.

  • Расширительный клапан регулирует поток хладагента в испаритель в зависимости от нагрузки.
  • Расширительный клапан предотвращает попадание жидкого хладагента в компрессор.
  • Поддерживает перегрев от 6°C до 7°C на выходе из испарителя.
  • Расширительный клапан помогает поддерживать необходимое количество хладагента на стороне высокого и низкого давления системы.

4. Зачем нужна уравнительная линия в термостатическом расширительном клапане (ТРВ) или дозирующем клапане?

На практике всегда существует перепад давления на испарителе, а в больших испарителях он еще выше.

Таким образом, испаритель с перепадом давления 0,15 кг/см 2 и выше должен иметь уравнительную линию на выходе из испарителя. В противном случае испарителю не хватит хладагента.

В расширительном клапане давление, действующее на верхнюю часть диафрагмы (Pb), соответствует давлению насыщения плюс степень перегрева хладагента, выходящего из испарителя.

Таким образом, давление (Pb) пытается открыть клапан против силы пружины (Ps) из-под диафрагмы.

Уравнительная линия имеет давление насыщения (Po) хладагента, выходящего из испарителя и действующего ниже диафрагмы.

Таким образом, оба давления насыщения Pb и Po компенсируют друг друга, поэтому предполагается, что степень перегрева (Pb) открывает расширительный клапан, поддерживая перегрев от 6° до 7° и предотвращая попадание жидкости на всасывание компрессора.

5. ФИЛЬТР-ОСУШИТЕЛЬ в системе охлаждения

Фильтр-осушитель, установленный в жидкостной линии на выходе из змеевика конденсатора для фильтрации или улавливания мельчайших посторонних частиц и поглощения любой влаги или воды, присутствующих в системе .

Влага может привести к выходу из строя клапанов компрессора, в случае герметичного компрессора часто вызывает пробой изоляции обмотки двигателя, что приводит к короткому замыканию или заземлению двигателя.

Присутствие влаги может ухудшить свойства смазочного масла и вызвать образование металлического или другого кислого шлама  , что может привести к засорению или закупорке клапанов и других масляных каналов.

Влага реагирует с хладагентом с образованием кислого раствора. Этот кислый раствор растворяет медные трубки и извлекает медь из сплавов на основе меди, таких как латунь или бронза, присутствующих в различных частях системы кондиционирования воздуха.

Эта медь осаждается в подшипниках и клапанах компрессора в виде «медного покрытия», что может привести к утечкам в системе, неправильному вакуумированию или вакуумированию системы, неисправности фильтра/осушителя, загрязнению масла и хладагента.

Осушитель поглощает влагу; осушающий материал может быть твердым или жидким.

Твердый осушитель представляет собой силикагель, активированный оксид алюминия, цеолиты, диоксид титана, тогда как промышленный твердый осушитель представляет собой активированный уголь, оксиды металлов и специально разработанные пористые гидриды металлов.

Силикагель является одним из наиболее эффективных и часто используемых материалов в осушителях, обладающих хорошей долговременной стабильностью.

Однако это не термостойкий материал и поэтому подходит только для низкотемпературных систем.

Современные осушители содержат капсулы с твердым осушителем, таким как активированный оксид алюминия или цеолит, способные поглощать кислоту , и защищают отверстие клапана термостатического расширительного клапана от повреждения мелкими частицами мусора.

В настоящее время осушители совместимы со всеми коммерчески доступными хладагентами, включая r-410a.

Большие осушители изготовлены таким образом, что их можно открывать для удаления использованного влагопоглотителя и замены его новым, в то время как осушители малых размеров заменяются как единое целое.

Фильтры-осушители на линии всасывания являются временной установкой для очистки системы, после обслуживания необходимо выбросить, если давление упадет ниже установленного давления.

Забитый осушитель может привести к нехватке хладагента в испарителе   и увеличению времени работы компрессора.

6. Смотровое стекло|Индикатор влажности

Смотровое стекло дает более точные показания в горизонтальном положении и показывает пузырьки на верхней части смотрового стекла/индикатора влажности.

В вертикальном положении пузырьки газообразного хладагента попадают в любое место в смотровом стекле/индикаторе влажности.

Наличие пузырьков в смотровом стекле во время нормальной работы указывает на низкий уровень хладагента.

Смотровые стекла используются для определения наличия паров хладагента в трубе, по которой должен проходить только жидкий хладагент.

Смотровое стекло  устанавливается ближе всего к термостатическому расширительному клапану  , чтобы определить, сколько жидкости находится на расширительном клапане и вытягивается из фильтра-осушителя; его также можно использовать для индикации содержания влаги в хладагенте.

Индикация наличия только жидкости означает, что система работает правильно, а наличие пузырьков газа означает, что системе не хватает хладагента.

Смотровые стекла для индикации влажности имеют цветной индикатор, который меняет цвет, когда содержание влаги в хладагенте превышает критическое значение.

Обычно используемые материалы для смотровых стекол – латунь, а для аммиака – сталь или чугун.

7. Теплообменники в системе охлаждения

Холодный хладагент, выходящий из выпускного отверстия змеевика испарителя, можно использовать для переохлаждения теплого жидкого хладагента, выходящего из выпускного отверстия конденсатора, с помощью теплообменника, как показано на схеме, известной как всасывание жидкостного теплообменника.

За счет охлаждения и отвода энтальпии (тепла) от теплого жидкого хладагента и последующего выпуска на вход расширительного клапана обеспечивается более эффективное использование поверхности испарителя.

Повышение холодопроизводительности и снижение массового расхода хладагента в компрессор.

Недостатком этой системы может быть то, что испаритель не может обеспечить требуемый перегрев хладагента, поступающего на всасывание компрессора.

Смесь пара и жидкого хладагента, попадающая на всасывание компрессора, может привести к серьезному повреждению компрессора.

Таким образом, общий эффект от установки такого теплообменника зависит от термодинамических свойств хладагента и условий его эксплуатации.

8. Электромагнитный клапан

Электромагнитный клапан представляет собой электромагнитный клапан для автоматического открытия и закрытия линий жидкости и газа.

Когда на катушку подается питание, пластина мембранного клапана поднимается в открытое положение и наоборот, когда катушка обесточивается.

Спускное отверстие позволяет хладагенту оказывать давление на верхнюю часть диафрагмы, обеспечивая герметичное закрытие, когда электромагнитный клапан находится в закрытом положении.

Электромагнитные клапаны используются в системах охлаждения и кондиционирования воздуха (HVAC) для изоляции термостатического расширительного клапана во избежание затопления испарителя.

Перегоревшая катушка, поврежденная диафрагма или засорение грязью приводят к неисправности электромагнитного клапана.

9. Клапан обратного давления

Клапан обратного давления иногда может быть установлен в систему для сдерживания высокого давления в испарителе, когда два или три выходных отверстия испарителя входят в общую линию всасывания компрессора.

Обратный клапан устанавливается на выходе из испарителя в многотемпературной зональной системе, как показано на схеме.

Клапаны обратного давления обычно устанавливаются в более теплых помещениях, где температура установлена ​​на уровне от 4°C до 5°C или выше, например Овощехранилище или вестибюль.

 

Отсутствие обратного клапана может привести к низким температурам или переполнению испарителя, что может вызвать такие проблемы, как замерзание в охладителях воды и порча скоропортящихся продуктов, таких как овощи и фрукты.

Создает противодавление на змеевике испарителя и обеспечивает поступление большей части жидкого хладагента в зоны с более низкой температурой, такие как мясные или рыбные цеха.

Обратные клапаны подпружинены и являются обратным клапаном.

а. Разгрузочное устройство холодильного компрессора Предохранительное устройство

Большие холодильные компрессоры работают с 2-3 агрегатами в V- или W-образной компоновке, снабженными разгрузочным механизмом.

Позволяет легко запускать компрессор без нагрузки по давлению паров в блоке цилиндров, что позволяет использовать электродвигатели с низким пусковым моментом.

Разгрузочный механизм работает путем подъема всасывающего клапана в открытое положение, так что газ свободно входит и выходит через клапан без сжатия.

Механизм разгрузки работает за счет сброса давления масла из картера компрессора масляным насосом через электромагнитный клапан на разгрузку компрессора. Электромагнитный клапан получает сигнал от системы управления нагрузкой.

Корпус нагнетательного клапана удерживается предохранительной пружиной, как показано на рисунке, которая позволяет поднять весь нагнетательный клапан в случае попадания жидкости в компрессор.

Система разгрузки используется для контроля производительности путем последовательного включения или выключения цилиндров или групп цилиндров.

Другие методы регулирования производительности включают изменение скорости компрессора и «перепускание горячего газа», при котором часть нагнетаемого газа из компрессора направляется непосредственно в испаритель в обход конденсатора.

б. Предохранительное устройство отключения высокого давления компрессора

Компрессор, оснащенный устройством отключения высокого давления нагнетания, предотвращает избыточное давление в системе и перегрузку двигателя компрессора.

Некоторые реле высокого давления автоматически контролируют перезапуск компрессора при падении давления; другие имеют механизм ручного сброса.

Выключатель высокого давления останавливает двигатель компрессора при давлении около 90% от максимального рабочего давления системы.

в. Предохранительное устройство отключения компрессора по низкому давлению

Выключатель отключения по низкому давлению используется для защиты от слишком низкого давления всасывания, которое обычно указывает на засорение грязью, образование льда при наличии воды в системе или утечку хладагента.

Регулятор обычно настраивается на остановку компрессора при давлении, соответствующем температуре насыщения на 5°C или 41°F  ниже самой низкой температуры кипения.

На некоторых небольших предприятиях он также используется в качестве регулятора температуры, т.е. остановка и запуск компрессора для поддержания заданного давления и температуры.

д. Компрессор Дифференциальное давление смазочного масла Предохранительное устройство

Дифференциальное реле давления смазочного масла используется для защиты от слишком низкого давления масла в системах принудительной смазки. Это дифференциальное управление с использованием двух сильфонов. Одна сторона реагирует на низкое давление всасывания, а другая — на давление масла.

Давление масла должно быть выше давления всасывания, чтобы масло вытекало из подшипников. Если давление масла выходит из строя или падает ниже минимального значения, дифференциальное реле давления смазочного масла останавливает компрессор по истечении нескольких секунд.

В картере холодильного компрессора находится хладагент под давлением всасывания.

Давление смазочного масла должно быть больше, чем давление всасывания, чтобы смазочное масло вытекало из подшипников.

Давление смазочного масла должно быть выше давления всасывания картера, иначе подшипники могут быть повреждены из-за потери смазки.

Давление смазочного масла установлено на 2 бара выше давления всасывания.

11. Как удалить масло из системы охлаждения?

Некоторое количество масла всегда уносится сжатым газообразным хладагентом и должно быть удалено.

Функция маслоотделителя :

  1. Во избежание попадания масла и загрязнения внутренних поверхностей испарителя и других теплообменников важно, чтобы масло возвращалось в холодильный компрессор .
  2. Для обеспечения возврата масла в картер компрессора, предотвращения любого выхода из строя движущихся механических частей из-за нехватки масла.

Маслоотделитель, установленный между компрессором и конденсатором, с внутренними перегородками и сетками для удаления масла из смеси масло/хладагент.

Отделение нефти механическое путем замедления и изменения направления газово-нефтяного потока.

Масло, отделенное от хладагента, собирается на дне сепаратора и снова возвращается в картер или ресивер через автоматический поплавковый клапан.

12. Почему холодильный компрессор всасывает из картера?

Выход змеевика испарителя ведет в картер компрессора. Преимущества этой конструкции:

  • Поскольку картер находится под давлением, воздух не может попасть в систему.
  • Помогает смазывать поршень компрессора, гильзу и другие движущиеся металлические детали.
  • Газообразный хладагент смешивается с маслом; это свойство помогает газу возвращать масло в систему через маслоотделитель.

13. Термостаты

Термостаты представляют собой электрические выключатели с регулируемой температурой, используемые как для обеспечения безопасности, так и для функций управления. При установке на линии нагнетания компрессора они настроены на остановку компрессора, если температура нагнетания слишком высока.

Термостаты также используются для контроля температуры в охлаждаемом помещении путем циклического включения и выключения компрессора и путем «открытия и закрытия» электромагнитного клапана на жидкостной линии.

Три типа элементов используются для обнаружения и передачи изменений температуры на электрические контакты.

  1. Наполненная жидкостью колба, соединенная через капилляр с сильфоном.
  2. Термистор.
  3. Биметаллический элемент.

Вышеупомянутые элементы управления установлены в руководстве по эксплуатации установки и должны регулярно проверяться на наличие утечек хладагента из сильфонов и соединительных трубок. Электрические контакты следует осмотреть на наличие признаков износа и искрения.

14. Предохранительное устройство для сброса давления

Холодильные системы рассчитаны на максимальное рабочее давление (МРД), превышение которого в результате пожара, экстремальных температурных условий или неисправного электрического управления может привести к повреждению какой-либо части системы. взрываться.

Во избежание взрыва или внезапного повышения давления компрессоры и сосуды под давлением оснащены устройством сброса давления.

Существует три типа предохранительных устройств

  1. Подпружиненные предохранительные клапаны остаются открытыми при максимальном рабочем давлении и закрываются, когда давление падает до безопасного уровня. Предохранительные клапаны не должны подвергаться вмешательству во время работы и должны быть заблокированы или опломбированы для предотвращения несанкционированной регулировки.
  2. Разрывные мембраны, состоящие из тонких металлических диафрагм, предназначенных для разрыва при давлении, равном максимальному рабочему давлению.
  3. Плавкие вставки, содержащие металлический сплав, плавятся при достижении температуры в системе, соответствующей ПДК.

Обычно выброс из предохранительного устройства выбрасывается непосредственно в атмосферу.

На некоторых заводах предохранительные устройства устроены таким образом, чтобы разгрузить систему в сторону низкого давления.

15. Система охлаждения: Перепускной клапан горячего газа

Перепускной клапан горячего газа, используемый в компрессорах, не имеет устройства снижения производительности, такого как разгрузочный клапан компрессора.

Байпасный клапан регулирует холодопроизводительность путем подачи нагнетаемого газа обратно на всасывание.

Поддерживает постоянное давление в испарителе независимо от нагрузки. Это клапан постоянного давления, балансирующий между давлением всасывания и предварительно установленным усилием пружины.

Как работает компрессионная холодильная система?

Как работает компрессионная холодильная система?

  • Автор сообщения: