Регулировка трв: Регулировка трв danfoss. Методика регулирования трв

Содержание

Регулировка терморегулирующего вентиля ТРВ на рефрижераторе и кондиционере в москве с гарантией

В большинстве документов указывается, что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ. Если по какой-либо причине появится необходимость дополнительной регулировки?


Мы рекомендуем следующий метод. Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик которого следует укрепить на термобаллоне ТРВ.

 

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объёме близкой к температуре отключения компрессора (настройка, обеспечивающая стабильность при температуре 25℃, может привести к пульсациям при температуре 20℃).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технология настройки заключается в том что, чтобы сначала вывести ТРВ на предельный режим, при котором начнутся пульсации.

·        Для этого при постоянной величине перегрева ( показания термометра и манометра низкого давления не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.

·        Если при этом появляются пульсации перегрева ( пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).

В этом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

Важно убедится точно ли дело в ТРВ, а не в чем то другом, и только когда вы уверены что дело в неправильно настроенном терморегулирующим вентиля можно приступать  к данной процедуре. 

Как работает терморегулирующий вентиль (ТРВ)

Постоянно растущий спрос на компрессорно-конденсаторные блоки LESSAR серии Techno Cool активизирует работу службы информационно-технической поддержки ТМ LESSAR. Налаженная обратная связь с партнерами позволяет специалистам службы оперативно реагировать на различные вопросы, возникающие в процессе проектирования, подбора и монтажа систем кондиционирования с применением ККБ.

Прежде всего, важно обратить внимание на факторы, влияющие на работоспособность и надежность таких систем. В ранее опубликованных статьях заострялось внимание на корректном подборе ККБ, проектировании фреоопроводов и подборе запорно-регулирующей арматуры (в частности ТРВ).

Однако жизненный цикл системы кондиционирования не ограничивается проектированием. Надежность системы закладывается также на стадии монтажа и пусконаладки.

Служба информационно-технической поддержки ТМ LESSAR расширяет кругозор своих партнеров в этой области.

В данной статье внимание заострено на таком элементе фреонового контура, как терморегулирующий вентиль (ТРВ).

ТРВ – вентиль с узким проходным сечением предназначен для дросселирования и регулирования подачи хладагента в испаритель в соответствии с тепловой нагрузкой. 

Дросселирование – это понижение давления хладагента от давления конденсации до давления кипения. Этот процесс необходим для осуществления холодильного цикла, который используется для охлаждения воздуха в системах с использованием ККБ. Функциональная схема холодильного контура приведена на рисунке ниже. Охлаждение воздуха происходит за счет отвода тепла к хладагенту, кипящему в испарителе. Пар хладагента всасывается компрессором через трубопровод 2. В компрессоре хладагент сжимается до высокого давления и температуры.

 По трубопроводу 1 хладагент нагнетается в конденсатор, где конденсируется за счет отвода тепла окружающим воздухом. Жидкий хладагент дросселируется в ТРВ и подается в испаритель по трубопроводу 3.


Для осуществления холодильного цикла важно правильно регулировать подачу хладагента в испаритель – это одна из функций ТРВ. Слишком большая подача  хладагента в испаритель может привести к попаданию жидкого хладагента в полость сжатия компрессора. Это,   в свою очередь,  приведет к гидроудару и выходу из строя компрессора. Недостаточная подача приведет к снижению  холодопроизводительности и аварийным режимам работы системы: возможна авария по  низкому давлению хладагента на всасывании и авария из-за перегрева обмоток электродвигателя.

Более подробно и наглядно о принципе работы ТРВ, монтаже и настройке, а также о последствиях некорректной настройки терморегулирующего вентиля вы можете узнать в представленном видео: 


3.5 Регулятор потока - УКЦ

Регулятор потока служит для дозированной подачи жидкого хладагента из области высокого давления (от конденсатора) в область низкого давления (к испарителю).

Самым простым регулятором потока является свёрнутая в спираль тонкая длинная трубка, называемая капиллярной трубкой, диаметром _0,6 — 2,25 мм_ различной длины.

Капиллярные трубки наиболее широко применяются в кондиционерах Сплит — систем малой мощности. Это обусловлено их низкой стоимостью, простой конструкции и надёжностью эксплуатации.

Капиллярная трубка надёжно функционирует как в условиях постоянной нагрузки (постоянных давлений нагнетания и всасывания), так и на переходных режимах.

Однако в эксплуатации бывают случаи изменения нагрузки испарителя или колебания давления нагнетания компрессора, которые могут привести к недостаточному или избыточному питанию испарителя хладагентом. Это связано с тем, что расход хладагента через трубку зависит только от перепада давлений на трубке.

+_Например:_+

# при понижении давления конденсации из-за снижения окружающей температуры, заполнение испарителя будет недостаточно, вследствие чего _снизится_ — холодо производительность;
# при снижении тепловой нагрузки на испаритель весь жидкий хладагент _не будет_ выкипать в испарителе, может попасть в компрессор, повредить его клапаны и подшипники. Это явление называется «гидравлическим ударом».

В более мощных установках применяется терморегулирующий вентиль (_ТРВ_), регулирующий подачу хладагента в испаритель таким образом, чтобы поддерживать заданное давление испарения и перегрев в испарителе при изменении условий работы холодильной машины.

На Рисунке 19 показана схема ТРВ с внутренним уравниванием для холодильных машин малой и средней мощности.

+_Схема терморегулирующего вентиля (ТРВ) с внутренним уравниванием._+

Рисунок 19
1 — ТРВ;  4 — мембрана;
2 — пружина;  5 — испаритель;
3 — регулировочный винт;  6 — термо баллон.

Расход хладагента через ТРВ определяется проходным сечением регулирующего клапана.

На регулирующую мембрану ( 4 ) воздействует усилие пружины ( 2 ) и давление за клапаном — давление испарения, направленное на закрытие клапана. Над мембраной ( 4 ) термо баллоном ( 6 ) создаётся давление, направленное на открытие клапана.

Термо баллон крепится к фреонопроводу на выходе испарителя, поэтому давление в баллоне и, следовательно, над мембраной, определяется температурой на выходе испарителя (или перегревом в испарителе).

При увеличении температуры наружного воздуха хладагент начинает кипеть более интенсивно. Перегрев хладагента увеличивается и соответственно растёт температура термо баллона. Возросшее давление в баллоне воздействует на мембрану _ТРВ_ и открывает клапан, увеличивая подачу хладагента в испаритель и восстанавливая состояние равновесия.

При уменьшении температуры наружного воздуха процесс происходит в обратную сторону. _ТРВ_ прикрывается и уменьшает подачу хладагента в испаритель.

Регулировкой настройки пружины ( 2 ) можно изменять настройку ТРВ, задавая давление испарения и величину перегрева.

Однако при изменении гидравлического сопротивления испарителя вследствие варьирования условий работы холодильной машины ТРВ с внутренним уравниванием не позволяет точно поддерживать постоянное давление испарения на выходе.

На Рисунке 20 показана схема ТРВ с внешним уравниванием.

+_Схема терморегулирующего вентиля (ТРВ) с внешним уравниванием._+

Рисунок 20
1 — ТРВ;  4 — мембрана;
2 — пружина;  5 — испаритель;
3 — регулировочный винт;  6 — термо баллон;
7 — управляющая линия.

В холодильных машинах средней и большой мощности при регулировании мощности применяют _ТРВ_ с внешним уравниванием, в котором давление замеряется не за клапаном, а на выходе из испарителя с помощью дополнительной управляющей трубки ( 7 ). Благодаря такому подключению, _ТРВ_ обеспечивает стабильное поддержание давление испарения и перегрева при переменном гидравлическом сопротивлении испарителя.

3.5. Терморегулирующие вентили

Поплавковые регулирующие вентили высокого давления устанавливают на линейном ресивере или на конденсаторе, когда нет ресивера. Правильное заполнение испарителя будет обеспечиватьсятолькопристабильномзаполненииустановкихладагентом. При утечкаххладагентаиспарительнедозаполняется. ВсвязисэтимПРВ высокого давления имеют ограниченное применение.

Терморегулирующие вентили (ТРВ) предназначены для автоматического регулирования количества хладона, поступающего в испаритель в зависимости от перегрева его паров, выходящих из испарителя (перегрев — это разность между температурой кипения хладагентависпарителеитемпературойпаровнавыходеизнего). Процесс регулирования сопровождается дросселированием хладагента отдавленияконденсации(жидкийхладон) додавлениякипения, при котором хладон существует в жидком и парообразном состояниях. Для перехода хладона в парообразное состояние требуется подвод тепла извне — так называемая скрытая теплота парообразования. Эта теплота подводится в испарителе от циркулирующего воздуха и увеличивается (на 1 кг хладона) при понижении температуры испарения. Объем всасываемых паров хладона в течение часа практическипостояненидаженесколькоснижаетсяприуменьшениидавления всасывания из-за высокой текучести паров хладона. Вследствие этогодляполучениянизкихтемпературиспарениянеобходимоснижать количествохладона, поступающеговиспаритель. Спонижениемтемпературыиспаренияхолодопроизводительностьустановкиснижается, а с понижением температуры конденсации (более холодный хладон, поступающий к регулятору) возрастает. Поэтому терморегулирующий вентиль должен автоматически регулировать количество хладона, реагируя на температуру испарения и температуру паров на входе в компрессор.

ТРВ — регулятор прямого действия, т.е. регулятор без подвода энергии извне. Принцип работы ТРВ основан на использовании зависимости перегрева паров хладагента, выходящих из испарителя, от тепловой нагрузки на испаритель.

Если подавать определенное количество хладагента в испаритель, то при повышении тепловой нагрузки на него возрастает ин-

Рис. 3.8. Схема установки терморегули-

тенсивностькипенияхладагента и не вся теплопередающая поверхность будет активно участвовать в работе, а перегрев на выходе из испарителя увеличится.

Присниженииженагрузкина испаритель процесс кипения замедляется, пары хладагента перенасыщаются и может наступить«влажныйход» компрессо-

распоследующимегоповреждением, приэтомперегревнавыходеиз испарителя уменьшается.

На рис. 3.8 показана принципиальная схема работы ТРВ. Мембрана 4 терморегулирующего вентиля связана с клапаном

3, через который из жидкостного трубопровода 2 в испаритель 8 поступает хладагент. Сверху на мембрану действует давление наполнителятермочувствительнойсистемы, воспринимающейтемпературу перегретого пара на выходе из испарителя, через термобаллон 7 и капиллярную трубку 5. Снизу на мембрану 4 действует давление испарения хладагента из уравнительной линии 6 и усилие регулировочной пружины 1. При отсутствии перегрева мембрана находитсявнормальномсостоянииисвязанныйснейклапанподдействием пружины 1 должен быть закрыт, в испаритель хладагент не поступает. Такое положение клапана должно соответствовать неработающему компрессору.

Приувеличенииперегревадавлениенаполнителятермочувствительнойсистемывозрастаетивоздействуетнамембрану, котораяпрогибаетсяи, преодолеваяпротиводавлениеиспаренияипружины, открывает клапандляпроходахладагентависпаритель. Воздействуянарегулировочнуюпружину, можноизменятьначалооткрытияклапана.

Таким образом, уменьшение перегрева паров хладагента приводит к понижению температуры и давления в термочувствительной системе, поэтомуклапанподнимаетсяиуменьшаетподачухладагентависпаритель, аувеличениеперегреваприводиткповышениютемпературы и давления термочувствительной системы, при этом клапан опускается, увеличивая поток хладагента в испаритель.

На холодильной установке FAL-056/7 установлен терморегулирующий вентиль 12ТРВ-10 (рис. 3.9), который состоит из трех частей: термосистемы, клапанного узла и узла регулировки (настройки). В термосистему, заполненную хладоном, входят термобаллон 15, капиллярная трубка 14 и головка вентиля 13 с мембраной. Термобаллон укреплен сверху на трубопроводе, выходящем из испарителя, иизолирован. Клапанныйузелсостоитизтолкателя8, сальника6, клапана10. Клапанперекрываетседло9, черезкотороедросселируется жидкий хладагент. Узел настройки состоит из регулировочной пружины 4 со стаканом 11, винта 13 настройки со втулкой 2 и штуцера 1, колпачка 12.

Вкорпусе5 имеютсядваотверстиядляприсоединенияТРВ(впаивания) в жидкостной трубопровод перед распределителем жидкости испарителя и штуцер для подключения уравнительной линии.

Рис. 3.9. Терморегулирующий вентиль 12 ТРВ-10

Предельныйходклапана3 определяетсявеличинойпрогибамембраны 7, а начало открытия его — величиной сжатия регулировочной пружины 4, которую можно регулировать с помощью винта 3 настройки и давления хладона термосистемы на мембрану в зависимости от температуры перегрева.

Техническая характеристика терморегулирующего вентиля 12 ТРВ-10 приведена ниже (таблица 3.1)

 

Таблица 3.1

 

 

Тип вентиля

Мембранный (хладон R12)

 

 

Номинальная производительность, кВт

11,63

Установленный перегрев при температуре

8—10

воздуха: на входе в испаритель, 20 °С и на

 

входе в конденсатор, 36 °С

 

Максимально допустимое внутреннее давле-

2,5

ние, МПа

 

Масса, кг

2,2

Вид присоединения

С обеих сторон фланцевые со-

 

единения

Вход

Соединение на пайке для трубы

 

18 × 1

Выход

Соединение на пайке для трубы 12

 

× 1

Уравнительная линия

Накидная гайка с ниппелем для

 

соединения на пайке трубы 6 × 1

При нормальной работе ТРВ и установившемся режиме работы холодильной установки разность температуры грузового помещения и температуры испарения составляет 8 — 12 °С; трубопровод у испарителя до места установки термобаллона покрывается инеем; всасывающий трубопровод у автоматического запорного вентиля должен бытьсухимилислегкаотпотевшим; обмерзание выходного соединительного трубопровода; хладон проходит через ТРВ с характерным шумом. Регулировка ТРВ осуществляется винтом 3 настройки после отворачивания колпачка 12 специальным ключом. Вращение винта 3 настройки по часовой стрелке — перегрев повышается, а против часовой — уменьшается.

На холодильных установках секций ВР применяются регуляторы 12ТРВ-12 и 12ТРВ-16 (первые две цифры — обозначение хладо

на R12, а последние указывают на номинальную холодопроизводительность). Холодопроизводительностьопределяетсяформойклапанадлятемпературыис- парения–15 °С, температурыконденсации 30 °С и наименьшем перегреве начала открытия клапана.

Устройство ТРВ приведено на рис. 3.10. СиловымэлементомТРВ

является герметически замкнутая Рис. 3.10. Устройство ТРВ термочувствительная система, со-

стоящаяизтермобаллона9, капилляра8, упругогоэлемента— сильфона 7, головки вентиля 6 и наполнителя. Термобаллон заполняется активированным углем и углекислым газом при определенном давлении. При повышении температуры баллона адсорбция углекислого газа в угле снижается, давление в замкнутой системе возрастает. Если при этом давление паров хладагента, воспринимаемое уравнительной линией на выходе из испарителя 10, и сила сжатой пружины 2 меньше усилия, воспринимаемого сильфоном со стороны углекислого газа, то клапан 3 с помощью штоков 5 переместится на величину, пропорциональную перегреву. Количество хладагента, проходящее через вентиль, увеличивается, температура перегретых паров уменьшается, соответственно давление в термосистеме падает. Наличиелиниивнешнегоуравниванияустраняетвлияниегидравлического сопротивления испарителя и распределителя хладона по секциям испарителя 4 на величину перегрева начала открытия клапана, так как увеличение перегрева ухудшает работу испарителя и холодильной установки в целом. Однако для компрессора недопустима работа в режиме «влажного хода», при котором на линию всасывания попадает смесь жидкого и парообразного хладона, что вызывает гидравлические удары и кавитацию в цилиндрах компрессора. Поэтому важное значение имеет настройка перегрева начала открытия с помощью регулировочного винта 1. Нижний предел настройки перегрева в стандартных условиях допускается не более 1,5 °С, верхний предел — не менее 16 °С. Направление движения хладона через ТРВ и в системе показано стрелками.

На щите приборов смонтировано два вентиля (один рабочий, другой запасной). Рабочий диапазон температур от –20 до +50 °С.

На установке кондиционирования воздуха MAB-2 установлен ТРВ типа TEF-12.

Техническая характеристика терморегулирующего вентиля TEF-12 приведена ниже (табл. 3.2).

 

Таблица 3.2

 

 

 

Диапазон испарения

-40 °С/ + 10 °С

 

 

 

 

Номинальная производительность

17400 Вт/ч

 

 

 

 

Перегрев (заводская регулировка)

4 °С при темп. на щупе 0 °С

 

 

 

 

Максимальная допустимая температура

+ 80 °С

 

щупа

 

 

Максимальное допустимое рабочее

2,2 МПа избыточное давление

 

давление

 

 

Максимальное допустимое давление

2,8 МПа избыточное давление

 

испытания

 

 

Терморегулирующий вентиль подавать в испаритель только такое количество жидкого хладагента, которое испаряется за счет восприятия тепла от проходящего через испаритель воздуха.

Это достигается следующим образом: (рис. 3.11). Сторона входа 1 и сторона выхода 2 разделены между собой форсункой 3 и иглой тарелки вентиля 4. Игла вентиля 4 соединена с сильфоном 5 путем нажимного штифта 6.

Над мембраной 5 существует давление от сильфона 9, установленногонавсасывающемтрубопроводе за испарителем.

Под сильфоном 5 имеется иззауравнительного трубопровода давление, равное давлению на выходе испарителя. Черезфорсунку3 уменьшается давление жидкого хладагента. Испарение хладагента происходит за счет по-

глощения тепла от приточ-

Рис. 3.11. Схема терморегулирующего

ноговоздуха. Трубопроводы

вентиля TEF-12

охлаждаются. Наполнениещупасужается, давлениенадсильфоном уменьшается, нажимной штифт приподнимает иглу клапана и таким образом впрыскивается меньшее хладагента. При той же подаче тепла меньше количество хладагента испаряется быстрее и пар хладагента перегревается в последней секции испарителя. Трубопровода и щуп нагреваются, наполнение щупа расширяется.

Посредством регулировочного шпинделя 8 и регулировочной пружины 7 устанавливается определенное противодавление относительно давления щупа. Этим достигается то, что впрыскивается всегда немного меньше хладагента, чем могло бы испаряться в испарителе, причемпархладагентавпоследнейсекциииспарителянагревается ещё я покидает испаритель всегда в перегретом состояния. Для настройкитерморегулирующеговентилярегулировочныйшпиндель 8 необходимо поворачивать влево (против направления вращения часовой стрелки) до слышного щёлканья или до упора, а затем на 10±1 оборотоввправо(понаправлениювращениячасовойстрелки), у насадки для форсунки 3 это отвечает размеру для длины пружины

в34 мм. Послеэтогоподходящимприборомдляизмерениятемпературынеобходимоизмеритьтемпературувсасывающеготрубопровода

вобласти термочувствительного элемента при работе установки в двухцилиндровом режиме (в месте измерения всасывающий трубопровод должен быть чистым до металлического блеска), причем одновременнонеобходимопроизводитьотсчеттемпературыиспарения на манометре низкого давления на приборной доске. Разность между измеренной температурой всасывающего трубопровода и отсчитаннойтемпературойиспаренияявляетсяперегревомпарахладагента. Притакойрегулировкеперегревсоставляетоколо10 °С. Вслучае отклонения измеренного перегрева от указанного можно подрегулироватьперегрев. Поворачиваниемустановочногошпинделя8 влево

— против направления вращения часовой стрелки перегрев уменьшается, аповорачиваниемвправо— увеличивается. Полныйоборот шпинделя даетизменение в0,5 °С. Нормальнымобразомтерморегулирующий вентиль и всасывающий трубопровод на одной стороне вагона работают в двухцилиндровом режиме, если во время ремонтных работнепереключенызажимымагнитныхвентилейвкрышном агрегате. Для контроля необходимо проверить температуру трубопровода между магнитным вентилем и терморегулирующим венти-

лем. Терморегулирующий вентиль работает в двухцилиндровом режиме, причемсоединительныйтрубопроводмеждунимимагнитным вентилем теплый. В заключение следует измерить перегрев с обеих сторон

Установленный перегрев пара хладагента достаточен, если он как в двухцилиндровом режиме, так и в четырехцилиндровом режиме будет не менее 5 °С.

Если перегрев превышает 15 °С, то следует повернуть регулировочныйшпиндель8 натриоборотавлево, послечегодолжнобытьзаметно уменьшениеперегрева. Еслижеперегревнеуменьшается, тоимеетместонеисправность терморегулирующего вентиля илиустановки.

Время работы холодильной установки от начала включения, переключения на четырехцилиндровый режим или от дополнительной регулировки терморегулирующего вентиля до измерения температуры всасывающего трубопровода должно быть не менее 20 минут, чтобы при измерении или отсчете было достигнуто установившеесясостояние. Вовремяизмерениянеобходимонаблюдатьза прибором для измерения температуры. В случае сильных колебаний температуры всасывающего трубопровода необходимо попытаться устранить эти колебания повышением перегрева (регулировочный шпиндель 8 повернуть на два оборота вправо). Колебания температуры всасывающего трубопровода вызываются колебаниямитемпературыпотокавсасываемогогаза— перегревпотокавсасываемогогазаменяетсяпостоянно. Еслиустранениеколебанийтемпературы всасывающего трубопровода не удается, то необходимо заменитьтепловуючастьтерморегулирующеговентиля. Колебания температуры перегрева допустимы до ±3 °С, но ниже 5 °С перегрев не допустим.

Если, например, на всасывающем трубопроводе температура составляет 15 °С, в то время как на манометре низкого давления давление испарения, равное 0,28 МПа = 6 °С температура испарения, то перегрев пара хладагента составляет 9 °С.

Приколебанияхтемпературывсасывающеготрубопроводамежду 13,5 °С и 16,5 °С при постоянной температуре испарения минимальная температура перегрева составляет 7,5 °С. После установки температуры перегрева необходимо навинтить колпачок 10, затянуть его и запломбировать.

Терморегулирующие вентили | AboutDC.ru

Глава 14 "Терморегулирующие вентили" из книги "Руководство по техническому обслуживанию холодильных установок и установок для кондиционирования воздуха". Автор Антонио Бриганти.

  1. Автоматические барорегулирующие вентили
  2. Терморегулирующие вентили (ТРВ)
  3. Перегрев газа на выходе
  4. Производительность
  5. Функционирование при изменении нагрузки
  6. Производительность распределителя
  7. Калибровка перегрева
  8. Техническое обслуживание и монтаж


В установках для кондиционирования воздуха и холодильных установках широко используются два типа терморегулирующих вентилей:

  1. автоматический клапан расширения;
  2. терморегулирующий вентиль (ТРВ).

Как автоматические клапаны расширения, так и терморегулирующие вентили являются инструментами пропорциональной регулировки и обеспечивают регулировку потока холодильного агента на входе в испаритель.

Автоматические барорегрирующие вентили

Автоматические барорегулирующие вентили являются предшественниками терморегулирующих вентилей. Они регулируют поток холодильного агента на входе в испаритель, обеспечивая постоянное давление в самом испарителе. Они могут использоваться только в установках, имеющих постоянный режим загрузки.

Калибровка клапана может регулироваться в некотором диапазоне значений, зависящем от условий функционирования.

В контуре должен иметься термостат испарителя, останавливающий работу компрессора при достижении требуемой температуры испарения (не путать с температурой в помещении). Точнее, он должен быть отрегулирован таким образом, чтобы температура срабатывания была примерно на 5°С выше температуры испарения. При остановке компрессора в нем поднимается давление, и автоматический клапан расширения закрывается. На рисунке 14.1 показана принципиальная схема холодильного контура, в котором установлен автоматический клапан расширения.

Терморегулирующие вентили (ТРВ)

Терморегулирующие вентили регулируют поток холодильного агента на входе в испаритель в зависимости от определенного значения перегрева газообразного холодильного агента на выходе. В испаритель поступает необходимое количество холодильного агента для его испарения в зависимости от тепловой нагрузки, чтобы обеспечить полное использование площади поверхности теплообмена. ТРВ могут использоваться на линиях с одним или несколькими испарителями.

На рисунке 14.2 показана принципиальная схема холодильного контура, в котором установлен ТРВ.

В зависимости от показателя давления используются две основные модификации:

  • Внутреннее выравнивание давления
  • Внешнее выравнивание давлений в ТРВ

Внутреннее выравнивание давления

На рисунке 14.3 показана схема функционирования и векторы давления, действующие на ТРВ с внутренним выравниванием давления. На мембрану клапана с одной стороны действует давление, передаваемое с датчика (ру), а с противоположной — сумма давлений испарителя (р0) и прижимной пружины (р3). При выравнивании этих трех векторов давления клапан остается постоянно открытым, и, соответственно, постоянным остается поток проходящего через него холодильного агента. В этих условиях количество холодильного агента, поступающего в испаритель, точно соответствует необходимому для восприятия тепловой нагрузки. Если же нагрузка понижается, происходят два процесса: холодильного агента становится избыточно много, а его давление повышается; понижается температура газа на выходе и пропорционально этому понижается давление в датчике. Вследствие этих процессов сумма давлений испарителя и пружины превышает давление, оказываемое на датчик клапана, что приводит к закрыванию клапана с уменьшением зазора для прохождения холодильного агента. Наоборот, если тепловая нагрузка в испарителе возрастает, количества холодильного агента в нем оказывается недостаточно, и давление его уменьшается; одновременно увеличивается температура газа на выходе из испарителя, что вызывает соответствующее повышение давления на датчик клапана.

В результате давление в клапане смещает мембрану вниз, что приводит к открытию зазора для прохождения жидкого холодильного агента, увеличивая объем его поступления в испаритель.

Клапаны с внутренним выравниванием давления применяются в основном в установках малой мощности.

Внешнее выравнивание давлений в ТРВ

ТРВ с внешним выравниванием давления имеют подвод давления из испарителя посредством соответствующей линии (капиллярной трубки), которая отходит от него несколько ниже датчика клапана. Соответствующая схема показана на рисунке 14.4. Сохраняют силу все ранее упомянутые положения, за исключением того, что давление р0в испарителе определяется при помощи капиллярной трубки.

Клапаны расширения с внешним выравниванием давления обычно применяются на агрегатах средней и большой мощности.

На рисунке 14.5 показана схема правильной установки клапана с соответствующей линией внешнего выравнивания давления; для сравнения на рисунке 14.6 приводится неправильное размещение компонентов: отвод давления линии выравнивания всегда должен производиться несколько ниже датчика клапана с верхней стороны горизонтальной трубки.

Перегрев газа на выходе

Терморегулирующий вентиль обеспечивает определенный перегрев газа на выходе из испарителя, необходимый для полного испарения возможно имеющихся капель несущей жидкости (жидкий холодильный агент не в коем случае не должен возвращаться в компрессор, поскольку способен вызвать серьезные неисправности). На рисунке 14.7 показана часть испарителя при нормальных условиях работы. Как можно заметить, смесь жидкость-пар, поступающая в испаритель в точке А, должна полностью испариться до точки Е.

Отсюда и до датчика клапана (точка F) происходит только перегрев газа. Перегрев заключается в повышении температуры газа выше температуры его насыщения (см. далее). Этот участок, то есть дополнительная поверхность испарителя не влияет на увеличение холодильного эффекта, но служит для защиты компрессора и устойчивого функционирования клапана.

Производительность

Производительность терморегулирующего вентиля определяется двумя компонентами:

  1. прохождением жидкости, то есть массой жидкого холодильного агента, способного проходить через клапан в единицу времени;
  2. холодильным эффектом, то есть количеством тепла, которое может аккумулировать холодильный агент из испарителя.

На производительность ТРВ и, как следствие, на прохождение жидкости и холодильный эффект влияют следующие факторы:

  • падение давления на клапане;
  • состояние холодильного агента;
  • переохлаждение;
  • калибровка клапана;
  • температура испарения;
  • термостатическая нагрузка.

Падение давления на клапане

Давление холодильного агента быстро уменьшается при прохождении через клапан, в результате чего часть быстро испаряется, препятствуя прохождению другой партии жидкости (рисунок 14.8).

Чем выше величина падения давления при прохождении через клапан, тем больше количество образуемого пара, наличие которого препятствует увеличению подачи, возрастающей при увеличении перепада давлений.

При большом падении давления в процессе прохождении холодильного агента через клапан уменьшается холодильный эффект, поскольку при этом испаряется большее количество жидкого холодильного агента.

Увеличение падения давления при прохождении через клапан повышает его производительность до определенного предела, после которого при любом повышении перепада давлений начинается снижение производительности (см. рисунок 14.9). Предельное значение перепада давлений, после превышения которого производительность клапана начинает снижаться, зависит от типа холодильного агента.

Состояние холодильного агента

Наличие пара на входе в клапан приводит к уменьшению его производительности, поскольку пар при равном весе занимает больший объем, чем жидкость, с вытекающим отсюда уменьшением объема прохождения жидкости.

Наличие пара может быть вызвано как отсутствием холодильного агента в контуре, так и высоким падением давления, ввиду чего на входе в клапан поддерживается значительно меньшее давление, чем давление в конденсаторе. Другой причиной может быть сильный перепад высот между конденсатором и терморегулирующим вентилем, в этом случае применяют метод переохлаждения жидкости.

Переохлаждение

Переохлаждение жидкого холодильного агента также повышает производительность терморегулирующего вентиля, это вызвано следующими причинами:

  • при переохлаждении уменьшается объем жидкости, испаряющейся при прохождении через клапан, приводя к увеличению его проходимости;
  • поскольку испаряется меньше жидкости, большее ее количество может еще испариться; в конечном счете происходит увеличение холодильного эффекта.

Перегрев

На рисунке 14.10 показана кривая, соответствующая изменению производительности клапана при изменении параметра перегрева.

Этот процесс, в зависимости от модели клапана и его производительности, может быть разбит на следующие этапы:

  1. Статический перегрев. Речь идет о величине показателя перегрева, необходимого для компенсации давления пружины таким образом, что при дальнейшем повышении температуры клапан открывается.
  2. Перегрев открытия клапана. Это значение показателя перегрева, при котором происходит смещение иглы клапана со своего ложа с открытием прохода для жидкости.
  3. Реальный перегрев установки. Является суммой статического перегрева и перегрева открытия клапана; это реальный показатель перегрева, при котором клапан будет функционировать.

Значение перегрева установки выводится на основе разницы значений температуры испарения и температуры охлаждаемой жидкости: когда эта разница небольшая, лучшим способом рационального использования испарителя является выбор низкой температуры перегрева; при значительной разнице температур, необходимо обеспечить защиту от возможных возвратов жидкости, повышая в этих целях температуру перегрева.

Если терморегулирующий вентиль подобран правильно, при функционировании с номинальной мощностью он не должен полностью открываться; тем самым ТРВ будет иметь некоторый запас производительности, который будет задействован только при высоких значениях перегрева.

Калибровка ТРВ

При вращении регулировочного стержня по часовой стрелке давление пружины возрастает, что соответствует повышению показателя статического перегрева и понижению производительности клапана.

Температура испарения

Кривые «давление-температура» всех холодильных агентов при заданном увеличении температуры имеют более заметные колебания давления на участке высоких температур. Вследствие этого при низкой температуре испарения небольшое изменение температуре на датчике клапана приводит к незначительным колебаниям давления на верхней стороне диафрагмы: это приводит к меньшему открытию клапана и меньшим изменениям его проходимости.

Термостатический заряд

Показатели «давление-температура» различных термостатических зарядов имеют свои отличительные особенности: при одинаковом показателе перегрева не происходит одинакового открытия клапана при изменении типа заряда.

Функционирование при изменении нагрузки

В различных типах холодильных установок и установок для кондиционирования воздуха большой мощности, имеющих несколько компрессоров, имеется возможность снижать холодильную мощность при уменьшении нагрузки путем прогрессивного отключения работающих компрессоров и/или их отдельных цилиндров. К сожалению, производительность ТРВ не может быть так же легко изменена, поэтому при остановке компрессоров или их частичной дезактивации производительность клапана оказывается избыточной. В разумных пределах регулировка клапана возможна, и он по-прежнему в состоянии обеспечить необходимые параметры потока холодильного агента. Понятно также, что при функционировании с малой нагрузкой тщательной регулировки клапана не требуется, поскольку не весь испаритель оказывается задействованным, и опасности возврата жидкости не возникает. Предусмотреть заранее режим функционирования ТРВ, когда система работает на пониженном режиме, трудно ввиду множества факторов, влияющих на его работу. Ниже приводится перечень мер предосторожности, при соблюдении которых обеспечивается нормальное функционирования клапана даже при снижении нагрузки до 65%.

ТРВ следует подбирать таким образом, чтобы при максимальных нагрузках он оставался как можно более открытым. В частности, когда запланированный режим предусматривает в основном работу с пониженной нагрузкой, рекомендуется выбирать клапан с производительностью на 10—15% меньше максимальных рабочих параметров установки.

Производительность распределителя

При использовании распределителя рекомендуется подбирать его таким образом, чтобы производительность точно соответствовала производительности установки при полной нагрузке; это позволяет избежать излишне большой производительности при пониженных режимах работы компрессора.

Калибровка перегрева

Калибровка величины перегрева должна обеспечивать максимально большое допустимое при максимальной нагрузке значение перегрева.

В установке, где частичное снижении показателя нагрузки превышает 65% ее мощности, должны применяться другие меры, перечисленные ниже.

Два или более испарителей с одинаковыми параметрами

На рисунке 14.11 показаны два независимых испарителя, каждый из которых питается через собственный ТРВ с распределителем. На каждый испаритель приходится половина общей нагрузки.

Соленоидные клапаны соединены с устройством для понижения производительности компрессора таким образом, что один из них закрывается, при сокращении нагрузки на компрессор на 50%, отсекая один из терморегулирующих вентилей. Остающийся ТРВ обеспечивает поддержание производительности на требуемом уровне.

Такая же простая система применима к различным испарителям при различных уровнях частичного понижения производительности компрессора. Различные типы компрессоров могут подсоединяться параллельно или последовательно; в этом случае необходимо учитывать, что компрессоры, находящиеся первыми, будут испытывать более высокую нагрузку, чем последующие, поэтому производительность различных клапанов и распределителей должна быть отрегулирована с учетом этого.

Единичный испаритель

На рисунке 14.12 показана схема установки двух терморегулирующих вентилей и двух распределителей на одном испарителе.

Каждый контур испарителя имеет подвод двух трубок распределения, каждая из которых, в свою очередь, проходит через свой распределитель. Соленоидные клапаны управляются устройством регулировки частичной загрузки компрессора, как это было описано ранее.

Если ТРВ, соленоидный клапан и распределитель контура А выбираются таким образом, чтобы покрывать 67% общей производительности, а 33% общей максимальной нагрузки будет приходиться на контур В, при переключении соленоидных клапанов будут обеспечиваться рабочие параметры, приведенные в таблице 14.1.

Таблица 14.1. Последовательность переключения соленоидных клапанов при изменении тепловой нагрузки.

Техническое обслуживание о монтаж

Терморегулирующий вентиль должен устанавливаться как можно ближе ко входу в испаритель. Если применяется распределитель, рекомендуется монтировать его непосредственно на выходе ТРВ. Очень важно обеспечить правильное расположение термобаллона, от чего в некоторых случаях зависит хорошая или неудовлетворительная работа всей холодильной установки. Для того, чтобы клапан соответствующим образом регулировал прохождение холодильного агента, необходимо обеспечить хороший тепловой контакт между термобаллоном и трубой всасывания. Для этого термобаллон следует закрепить двумя скобами на чистом и ровном участке трубы. Рекомендуется устанавливать чувствительный элемент на горизонтальном участке трубы всасывания. Если невозможно избежать вертикального монтажа, это необходимо сделать таким образом, чтобы выход капиллярной трубки был направлен вверх.

При диаметре линии всасывания в 7/8" (22 мм) или более, температура по периметру окружности трубы может заметно разниться. В связи с этим следует размещать термобаллон в точке окружности трубы, соответствующей значениям 16 и 20 ч на часовом циферблате (см. рисунок 14.13). Когда компрессор расположен над испарителем, рекомендуется производить подсоединение линии всасывания, как это показано на рисунке 14.14. На выходе из испарителя должен располагаться горизонтальный участок трубы, на котором крепится термобаллон; сразу за ним должен быть установлен сифон-накопитель для сбора возможно присутствующей жидкости и возможно имеющегося масла, циркулирующего по установке.

Установки с несколькими испарителями

Когда компрессор расположен под испарителем, необходимо выше испарителя установить накопитель для предотвращения возврата жидкости, возвращающейся под действием гравитации в компрессор. На установках с несколькими испарителями трубы всасывания должны располагаться таким образом, чтобы не допускать воздействия одного ТРВ на датчик другого. Пример правильного расположения труб показан на рисунке 14.15. В этом случае не допускается воздействие одного контура на другой и обеспечивается хороший режим функционирования и регулировки каждого ТРВ.

Подсоединение устройства внешнего выравнивания давления

Клапаны с внешним выравниванием давления могут функционировать только при обеспечении такого подсоединения. Штуцер соединения устройства для выравнивания давления (эквалайзера) должен располагаться на трубе всасывания через несколько сантиметров после термобаллона, как уже было показано на рисунке 14.12.

Регулировка клапана

Каждый терморегулирующий вентиль перед поставкой калибруется на заводе-изготовителе. Эта калибровка является правильной и в большинстве случаев не требует переналадки. Однако при наличии особых условий или при определенных типах применения клапана возможно изменение его калибровки для того, чтобы обеспечить желаемые показатели перегрева.

Во многих видах ТРВ отсутствует возможность регулировки: они калибруются на заводе-изготовителе, и показатель их перегрева не может быть изменен. Часто нерегулируемые клапаны являются модификациями обычных с фиксированным давлением пружины. Имеются приспособления, позволяющие регулировать и такие виды клапанов, но такая необходимость возникает редко.

Если надо понизить величину перегрева, следует вращать стержень регулировки клапана против часовой стрелки, для увеличения — по часовой стрелке. При изменении калибровки клапана для предотвращения ошибок калибровки не рекомендуется делать более одного оборота стержня регулировки за один раз и подождать по крайней мере тридцать минут, прежде чем производить новую коррекцию.

Общим правилом является то, что величина перегрева зависит от разницы температур между испарителем и охлаждаемым веществом. При очень больших значениях разницы этих температур, как в случае установок для кондиционирования воздуха, перегрев может достигать 10°С без излишнего снижения производительности испарителя. Для низкотемпературных холодильных установок, где разница между температурой испарения и температурой охлаждаемого вещества незначительна, показатель перегрева может уменьшаться до 5°С для того, чтобы максимально использовать площадь поверхности испарителя.

Определение величины перегрева

Определить величину перегрева возможно, выполнив перечисленные ниже операции. Разница между температурой на входе в испаритель и температурой на выходе из испарителя не позволяет получить точное значение перегрева, поэтому этот метод не рекомендуется использовать, так как падение давления в испарителе приводит к погрешностям в определении величины перегрева.

  1. Измерить температуру всасывания в месте установки термобаллона.
  2. Измерить манометром давление у всасывающего вентиля компрессора.
  3. По значению давления, полученному выше, определяют температуру насыщения, используя таблицу соотношения между температурой и давлением хладагента (в большинстве случаев потерями давления в трубопроводе всасывания можно пренебречь ввиду их малости).
  4. Вычесть значение температуры в пункте 3 из значения температуры в пункте 1. Полученная разница является температурой перегрева.

Классификация и назначение терморегулирующих вентилей

Введение

 

В числе направления совершенствования холодильных установок одно из ведущих мест принадлежит автоматизации, или, как сейчас принято говорить, автоматическому управлению. История развития холодильной техники тесно связана с параллельной разработкой и совершенствованием систем автоматического управления, внедрением электроники, а в самое последнее время - вычислительной и микропроцессорной техники.

Множество задач, которые решает автоматизация в холодильной технике, можно условно сгруппировать по целевым признакам. Главные из них:

1) повышения экономической эффективности холодильных установок;

2) поддержание заданных режимов технологических процессов;

3) обеспечение безопасности эксплуатации холодильных установок;

4) выдача информации о работе холодильных установок.

Указанные задачи часто выполняются одними и теми же методами и средствами.

Основным экономическим критерием, определяющий эффективность холодильной установки, является стоимость выработки единицы холода. Оно зависит от большого числа различных показателей. С помощью автоматизации можно влиять только на некоторые из них, а именно: трудоемкость обслуживания, расходы на электроэнергию и охлаждающую воду.

Трудоемкость обслуживания можно уменьшить, если создать рациональную и надежную систему автоматизации холодильной установки, что позволит сократить численность обслуживающего персонала или вообще отказа от непрерывного наблюдения и привести к периодическому обслуживанию.

Расходы на электроэнергию можно снизить настройкой системы автоматизации холодильной установки на такие режимы, которые обеспечивают наименьшее потребление электроэнергии. Такими режимами являются,

 

 

например, работа при самых высоких допустимых температурах кипения, своевременное оттаивание инея с охлаждающих поверхностей, отключение ненужных в данный момент потребителей электроэнергии (насосов, вентиляторов, и др.), максимальная выработка холода в периоды сниженных тарифов на электроэнергию (в ночное время).

Расходы на охлаждающую воду уменьшают своевременным отключением неработающих потребителей, а также подачей оптимального количества воды на охлаждения конденсатора.

Таким путем создаются условия, при которых будут минимальными потери пищевых продуктов в процессе их холодильной обработки и особенно хранения.

Совокупным использованием средств автоматики и рациональных технологических приемов решают конкретные задачи.

Объектом данной курсовой работы является терморегулирующий вентиль (ТРВ) с внешним уравниванием, а предметом – организация монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Цель данной курсовой работы является изучить технологию монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Задачи курсовой работы:

А) изучить конструктивные особенности и принцип работы терморегулирующего вентиля (ТРВ) с внешним уравниванием;

Б) основные приницпы монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием;

В) сформулировать основные правила техники безопасности при обслуживании и монтаже приборов автоматики, к которым относится терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Общая часть

Специальная часть

Устройство ТРВ с внешним уравниванием

 

Для больших холодильных машин используется более совершенная система регулировки - ТРВ с внешним регулированием (см. рис. 2). Она позволяет точно поддерживать давление испарения, если изменяется гидравлическое сопротивление испарителя.

Рис. 2. Терморегулирующий вентиль с внешним выравниванием:

1 — накидные гайки; 2— корпус; 3 — сопло; 4 — ходовая втулка; 5 — ходовой винт; 6 — колпачковая гайка; 7 — термобаллон; 8—сальник ходового винта; 9— гайка; 10— крышка мембраны; 11 — капиллярная трубка; 12— мембрана; 13 — сальник штока; 14— шток; 15—пружина; 16— клапан; 17— фильтр; 18— штуцер уравнительной линии.

 

Давление в такой системе измеряется не за клапаном регулятора, а уже на выходе из испарителя. Для этого в состав регулятора входит дополнительная трубка.

В результате такого подключения поддерживается постоянное давление испарения хладагента и перегрев, даже при изменении гидравлического сопротивления в испарителе.

Рисунок 3. Принцип функционирования ТРВ с внешним выравниванием давления. Вверху виден вход капиллярной трубки от линии выравнивания ниже мембраны клапана.

 

При выравнивании этих трех векторов давления клапан остается постоянно открытым, и, соответственно, постоянным остается поток проходящего через него холодильного агента. В этих условиях количество холодильного агента, поступающего в испаритель, точно соответствует необходимому для восприятия тепловой нагрузки. Если же нагрузка понижается, происходят два процесса: холодильного агента становится избыточно много, а его давление повышается; понижается температура газа на выходе и пропорционально этому понижается давление в датчике. Вследствие этих процессов сумма давлений испарителя и пружины превышает давление, оказываемое на датчик клапана, что приводит к закрыванию клапана с уменьшением зазора для прохождения холодильного агента. Наоборот, если тепловая нагрузка в испарителе возрастает, количества холодильного агента в нем оказывается недостаточно, и давление его уменьшается; одновременно увеличивается температура газа на выходе из испарителя, что вызывает соответствующее повышение давления на датчик клапана. В результате давление в клапане смещает мембрану вниз, что приводит к открытию зазора для прохождения жидкого холодильного агента, увеличивая объем его поступления в испаритель.

 

Рис. 4. Расположение элементов ТРВ

2. Термобаллон должен быть установлен на трубопроводе всасывания так, чтобы его температура соответствовала температуре газа, выходящего из испарителя. Температура корпуса ТРВ должна быть выше температуры термобаллона.

3. Размещение термобаллона зависит от диаметра трубопровода всасывания (рис. 5):

ü диаметр трубопровода < 5/8" (15,88 мм) — на "12–13 часов";

ü диаметр трубопровода от 3/4" (18 мм) до 7/8" (22 мм) — на "14 часов";

ü диаметр трубопровода от 1" (25,4 мм) до 1 3/8" (35 мм) — на "15 часов";

ü диаметр трубопровода более 1 3/8" (35 мм) — на "16 часов".

Рис. 5. Расположение термобаллона ТРВ на трубе

4. Нельзя устанавливать термобаллон внизу трубы или на маслоподъемной петле, так как находящееся там масло искажает реальную температуру газа.

5. Укреплять термобаллон следует только с помощью специального хомута, прилагаемого в комплекте с ТРВ. Применение другого крепежного материала категорически запрещается из-за деформации температурного поля и возможности ослабления контакта термобаллона с трубопроводом. Крепежный хомут должен быть затянут настолько, чтобы термобаллон нельзя было провернуть рукой.

6. Термобаллон должен устанавливаться как можно ближе к выходу испарителя на горизонтальном участке (рис. 6). При установке термобаллона на вертикальном участке в момент запуска кондиционера жидкость, скопившаяся в нижней части трубопровода и в маслоподъемной петле, начинает испаряться, сильно охлаждая всасывающую магистраль. В результате могут возникнуть пульсации ТРВ. Если нет возможности установить термобаллон на горизонтальной трубе, то, как исключение, термобаллон может быть установлен так, чтобы поток хладагента был направлен сверху вниз. Капиллярная трубка должна подходить к термобаллону сверху, а термобаллон должен быть направлен вниз.

Рис. 6. Установка термобаллона и трубки уравнивания давления ТРВ

7. Термобаллон нельзя располагать на месте пайки трубопровода.

8. Термобаллон должен быть тщательно теплоизолирован, чтобы наружный воздух не влиял на работу ТРВ.

9. Перед установкой термобаллона на трубопроводе места прилегания должны быть тщательно очищены. Желательно на место прилегания нанести теплопроводную пасту.

10. Уравнивающая труба ТРВ должна подходить к трубопроводу сверху и устанавливаться на расстоянии 100 мм от термобаллона.

11. Расстояние от уравнивающей трубки до маслоподъемной петли должно быть не менее 100 мм.

12. Если хладагент подается в испаритель черезраспределитель жидкости, то длины всех трубок, соединяющих распределитель с соответствующими секциями испарителя, должны быть одинаковыми.

13. Пайку неразборного ТРВ следует производить при охлаждении корпуса ТРВ смоченной ветошью. Разборный ТРВ можно паять только в разобранном виде, сняв верхнюю часть корпуса и дроссельный клапан.

Рис. 7. Типовой монтаж ТРВ:

1 — испаритель; 2 — манометр; 3 — регулировочный винт; 4 — капиллярная трубка термобаллона; 5 — уравнивающая трубка; 6 — жидкостная магистраль; 7 — термобаллон; 8 — газовая магистраль; 9 — маслоподъемная петля; 10 — место спая трубопровода

 

 

Настройка ТРВ

 

В большинстве документов указывается что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ если по какой-либо причине появится необходимость дополнительной регулировки''.

Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик которого следует укрепить на термобаллоне ТРВ (см. рис. 8).

Рис. 8. Крепление датчика на термобаллоне ТРВ

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме близкой к температуре отключения компрессора. (настройка, обеспечивающая стабильность при температуре 25 °С, может привести к пульсациям при температуре 20 0С).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технология настройки заключается в том, чтобы сначала вывести ТРВ на предельный режим, при котором начнутся пульсации.

· Для этого при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.

· Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Никогда не следует вращать регулировочный винт больше, чем на один оборот (предельный режим приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота). После каждого изменения настроики (поворота регулировочного винта) следует выждать не менее 15 минут (в дальнейшем это позволит сэкономить время на настройку).

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).

В любом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

В течение настройки давление конденсации должно оставаться относительно стабильным, но его величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

При настройке могут возникнуть две сложности:

1) Не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя.

В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.

2) Не удается исключить пульсации после их возникновения. Это означает, что ТРВ будучи даже полностью закрытым, сохраняет производительность выше, чем производительность испарителя.

В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, когда перегрев достигает слишком большого значения (это наступает когда ТРВ практически перекрыт давление кипения аномально малое и полный перепад температур слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

Настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому нельзя приступать к процедуре настройки, не будучи абсолютно уверенными в глубоком понимании рекомендаций.

Во всех случаях, перед началом настройки ТРВ, обязательно в качестве меры предосторожности следует заметить начальную настройку (начальное положение регулировочного винта) и точно подсчитать число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

 

Заключение

Терморегулирующий вентиль (ТРВ) - это наиболее широко используемый регулятор расхода хладагента в больших промышленных и торговых системах.

У ТРВ высокая рабочая производительность, и они подходят к любому типу хладагента. Принимая во внимание, что действие автоматического регулирующего вентиля основано на поддержании постоянного давления в испарителе, действие ТРВ основано на поддержании постоянного количества перегрева в испарителе, что позволяет ему заполнить испаритель самым эффективным количеством жидкого хладагента при любой нагрузке. При этом нет опасности попадания жидкости во всасывающий трубопровод и компрессор.

В результате его способности обеспечивать полное и эффективное использование поверхности испарителя при всех нагрузках, ТРВ особенно подходит для систем с частыми изменениями нагрузки.

Термобаллон плотно прижат к всасывающему трубопроводу на выходе из испарителя, чтобы он мог реагировать на изменения температуры пара хладагента. Хотя существует небольшая разница температуры пара хладагента во всасывающем трубопроводе и температуры хладагента в термобаллоне, на практике данные температуры считаются равным. Следовательно, давление жидкости в термобаллоне с парожидкостной смесью почти равно давлению пара хладагента во всасывающем трубопроводе. Количество желаемого перегрева зависит от силы пружины заданного значения. Так как клапан поддерживает количество перегрева, регулировку пружины называют регулировкой перегрева.

 

 

Введение

 

В числе направления совершенствования холодильных установок одно из ведущих мест принадлежит автоматизации, или, как сейчас принято говорить, автоматическому управлению. История развития холодильной техники тесно связана с параллельной разработкой и совершенствованием систем автоматического управления, внедрением электроники, а в самое последнее время - вычислительной и микропроцессорной техники.

Множество задач, которые решает автоматизация в холодильной технике, можно условно сгруппировать по целевым признакам. Главные из них:

1) повышения экономической эффективности холодильных установок;

2) поддержание заданных режимов технологических процессов;

3) обеспечение безопасности эксплуатации холодильных установок;

4) выдача информации о работе холодильных установок.

Указанные задачи часто выполняются одними и теми же методами и средствами.

Основным экономическим критерием, определяющий эффективность холодильной установки, является стоимость выработки единицы холода. Оно зависит от большого числа различных показателей. С помощью автоматизации можно влиять только на некоторые из них, а именно: трудоемкость обслуживания, расходы на электроэнергию и охлаждающую воду.

Трудоемкость обслуживания можно уменьшить, если создать рациональную и надежную систему автоматизации холодильной установки, что позволит сократить численность обслуживающего персонала или вообще отказа от непрерывного наблюдения и привести к периодическому обслуживанию.

Расходы на электроэнергию можно снизить настройкой системы автоматизации холодильной установки на такие режимы, которые обеспечивают наименьшее потребление электроэнергии. Такими режимами являются,

 

 

например, работа при самых высоких допустимых температурах кипения, своевременное оттаивание инея с охлаждающих поверхностей, отключение ненужных в данный момент потребителей электроэнергии (насосов, вентиляторов, и др.), максимальная выработка холода в периоды сниженных тарифов на электроэнергию (в ночное время).

Расходы на охлаждающую воду уменьшают своевременным отключением неработающих потребителей, а также подачей оптимального количества воды на охлаждения конденсатора.

Таким путем создаются условия, при которых будут минимальными потери пищевых продуктов в процессе их холодильной обработки и особенно хранения.

Совокупным использованием средств автоматики и рациональных технологических приемов решают конкретные задачи.

Объектом данной курсовой работы является терморегулирующий вентиль (ТРВ) с внешним уравниванием, а предметом – организация монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Цель данной курсовой работы является изучить технологию монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Задачи курсовой работы:

А) изучить конструктивные особенности и принцип работы терморегулирующего вентиля (ТРВ) с внешним уравниванием;

Б) основные приницпы монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием;

В) сформулировать основные правила техники безопасности при обслуживании и монтаже приборов автоматики, к которым относится терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Общая часть

Классификация и назначение терморегулирующих вентилей

 

ТРВ (терморегулирующие вентили) (рис. 1) – предназначены для автоматического регулирования расхода холодильного агента, поступающего в испаритель. Терморегулирующие вентили особенно подходят для подачи жидкости в сухие испарители. ТРВ защищают электродвигатель компрессора от чрезмерно высокого давления кипения.

Рис. 1. Терморегулирующий вентиль (общий вид)

 

Терморегулирующий вентиль – это точный прибор, регулирующий подачу хладагента в испаритель в зависимости от интенсивности кипения хладагента в испарителе. Он препятствует попаданию жидкого хладагента в компрессор. Например, если испаритель работает на R12 и при этом давление всасывания составляет 0,25 МПа, то температура насыщения при 0,25 МПа равна 4 °С. При этом, пока хладагент пребывает в жидком состоянии, его температура будет оставаться в пределах 4 °С. В одной и той же установке можно использовать несколько испарителей.

При выборе оптимального ТРВ для конкретной холодильной установки, необходимо учитывать температуру испарения, а также полные потери в ТРВ. Они равны разности давления конденсации и испарения за исключением потерь:

  • давления на распределительных патрубках и самом распределителе;
  • давления в жидкостном трубопроводе;
  • давления на различных элементах в жидкостном трубопроводе (осушителе, электроклапанах, вентилях, смотровом окне и пр.).

Существуют терморегулирующие вентили с внешним и внутренним уравниванием. Для уменьшения давления в испарителе в первом случае добавляют внешнюю трубку, которая связана с выходом из испарителя. ТРВ с внешним уравниванием отличается трубой, предназначенной для передачи давления хладагента. Она изменяет давление в испарителе и подает его к мембране со стороны пружины. Получается, что он поддерживает баланс между силой пружины – давления на выходе из испарителя — и в термобаллоне.

Терморегулирующие вентили с внутренним выравниванием используются в торговых и промышленных системах. Они подходят к любому хладагенту и имеют высокую производительность. Действие ТРВ основано на поддержании перегрева в испарителе — он позволяет ему заполнить испаритель необходимым количеством жидкого хладагента независимо от имеющейся нагрузки. Также нет опасности, что жидкость может попасть в компрессор или всасывающий трубопровод. В результате обеспечивается максимально эффективное применение поверхности испарителя. Данный вид ТРВ подходит для систем с часто меняющимися нагрузками.

 

 

Специальная часть

принцип работы ТРВ, характеристики и виды

В системах отопления и кондиционирования, работающих в переменных условиях окружающей среды, совершенно необходима регулировка мощности действующей установки. Это позволяет поддерживать требуемую температуру и экономить расход энергии при ее работе. В автоматическом режиме с этой задачей справляется терморегулирующий вентиль. Он контролирует поток рабочей среды, реагируя на внешние изменения температуры.

Внешний вид терморегулирующего устройства в системе охлаждения

Конструкция и принцип работы

В холодильных установках и кондиционерах используется замкнутый контур, по которому циркулирует хладагент, меняя свое агрегатное состояние в испарителе. В системах отопления нагрев осуществляется при перекачке горячей жидкости к термоэлементам. Несмотря на разработку различных альтернативных способов охлаждения и нагрева, подобная схема работы является основной.

При небольшой мощности устройства не требуется постоянная подстройка под внешние изменения. В маломощных системах охлаждения роль регулятора выполняет дроссель из капиллярной трубки. Его работа не зависит от производительности испарителей и не способен менять уровень хладагента в контуре.

В отопительных контурах устанавливаются ручные регуляторы. В них изменение потока горячей жидкости осуществляется поворотом рукоятки, опускающей или поднимающей ограничительный шток.

Устройство ручного вентиля отопления

В системах, где требуется постоянная подстройка под изменяющиеся внешние условия, регулировка мощности охлаждения или нагрева осуществляется изменением величины потока рабочей среды.

Основным регулятором силы потока является ТРВ, что означает терморегулирующий вентиль. Это устройство прямого действия. Для его работы не требуется поступление внешней энергии. Вентиль реагирует на перегрев паров, выходящих из испарителя. А он, в свою очередь, зависит от нагрузки на охладительную систему.

Дополнительным преимуществом применения терморегулирующих вентилей является некритичность системы к точному количеству заполняющего хладагента.

Внутреннее устройство регулятора показано на рисунке.

Классический терморегулирующий вентиль для систем охлаждения

*

Основными элементами ТРВ являются:

  • мембрана или диафрагма, управляющая движением запорного штока;
  • капиллярная трубка с термобаллоном, передающая устройству изменения температуры паров на выходе из испарителя,
  • регулирующая пружина для настройки уровня установки,
  • входной и выходной штуцера.

Совокупность диафрагмы, термобаллона и капиллярной трубки называют термоэлементом. Именно он воспринимает окружающую температуру и осуществляет регулирование подачи хладагента.

Принцип работы вентиля заключается в движении мембраны под действием трех сил:

  • давление среды из термобаллона,
  • уравнивающее давление испарителя,
  • воздействие пружинного механизма.

После достижения равновесия между этими тремя силовыми составляющими диафрагма устанавливает требуемую величину потока хладагента.

Давление термобаллона = уравнивающее давление + давление пружины на мембрану.

При изменении температуры и возрастании тепловой нагрузки в испарителе увеличивается нагрев термобаллона и давление заполняющей его жидкости. Через капиллярную трубку оно передается диафрагме, в результате чего происходит открывание вентиля и увеличение подачи хладагента в испаритель.

По схожему принципу устроен и термостатический клапан радиатора отопления.

Терморегулятор для отопительных систем

*

В нем роль термобаллона выполняет чувствительный элемент (поплавок), расположенной в полости, заполненной жидкостью или газом. При изменении температуры происходит уменьшение или увеличение объема среды. В результате поплавок меняет свое положение, сдвигая шток, который изменяет проходное сечение клапана.

Наиболее чувствительными считаются термоэлементы, заполненные газом. Они реагируют на температурные изменения быстрее, чем жидкостные. Но и стоят они дороже.

Характеристики и виды терморегулирующих вентилей

При выборе устройства необходимо обращать внимание на следующие параметры:

  • Максимальная температура, при которой способен работать вентиль. Она может достигать 200 °С.
  • Давление рабочей среды. Обычно находится в диапазоне 16 – 40 бар.
  • Материал изготовления. Корпус делается из бронзы или латуни. Но лучшими антикоррозионными свойствами обладают вентили из нержавеющей стали.
  • Производительность ТРВ. Это максимальный поток, пропускаемый полностью открытым вентилем. Она должна соответствовать мощности холодильной установки.
  • Диаметр входного и выходного штуцеров должен соответствовать трубопроводам всей регулируемой системы.

Терморегулирующие вентили для охлаждения и кондиционирования различаются по виду подачи уравнивающего давления из испарителя.

Внутреннее уравнивание

Передача давления под нижний край диафрагмы происходит через проточенные зазоры вокруг штока. Этот тип вентилей используется только для однозаходных испарителей, имеющих малое гидравлическое сопротивление.

Давление хладагента на мембрану осуществляется перед его подачей в испаритель.

Внешнее уравнивание

В более совершенной системе регулирования уравнивающее давление поступает в вентиль непосредственно с выхода испарителя. Для подвода этого давления в корпусе предусмотрена дополнительная входная трубка, обеспечивающая поступление хладагента от испарителя под мембрану термоэлемента. При этом поддиафрагменная полость изолируется отдельным уплотнением от выходного давления клапана.

Схема подвода давления к термоэлементу при внешнем уравнивании

*

Такие регуляторы применимы для работы при любых способах охлаждения и на разных типах хладагента. Но их нельзя использовать по схеме с внутренним уравниванием. Трубка под уравнивание обязательно должна соединяться с выходом испарителя. Заглушать ее нельзя.

Способы присоединения вентилей к трубам системы:

  • с помощью резьбового соединения;
  • через фланец;
  • неразъемное сварное соединение.

Терморегулирующие вентили систем отопления различаются по форме в зависимости от их расположения на трубе. Прямые или осевые врезаются в ровный участок трубопровода. Угловые варианты устанавливаются в местах изгиба трубы и меняют направления движения жидкости.

Угловой термостатический вентиль с воздухоотводчиком

Особенности монтажа

Установку терморегулирующих вентилей для отопления и кондиционирования следует рассматривать отдельно, поскольку требования и рекомендации в этих случаях отличаются.

Установка в систему кондиционирования

Общий вид включения терморегулирующего устройства в схему трубопровода для холодильных установок показан на рисунке.

Типовая схема установки ТРВ в систему охлаждения

*

При монтаже необходимо соблюдать следующие правила:

  • Вентиль устанавливается на магистраль в непосредственной близости от испарителя. Часть корпуса с диафрагмой должна располагаться вертикально.
  • Место установки термобаллона – максимально близко к выходу испарителя. Но устанавливать его следует только на горизонтальном участке трубопровода. Расположение баллона на вертикальной трубе приведет к сбоям в работе терморегулятора, особенно в момент запуска кондиционера.
  • Термобаллон должен плотно прилегать к выходному трубопроводу испарителя. Расположение – только сверху трубы, устанавливать термобаллон под трубой или сбоку недопустимо.
  • Закрепление на трубе должно проводиться специальным хомутом, входящим в комплект терморегулируемого вентиля. Другие способы не обеспечивают надежного контакта, что в итоге приводит к искажению давления, передаваемого на термоэлемент вентиля.
  • Для устройств с внешним уравниванием давления обязательно подключение уравнивающего патрубка к выходу испарителя. Отвод должен осуществляться с верхней части выходной трубы на расстоянии не менее 100 мм от термобаллона и на таком же расстоянии от петли маслоподъема.

Если нет возможности установить термобаллон на горизонтальном участке трубопровода, то допускается его крепление на вертикальной трубе. Но направление хладагента должно быть сверху вниз, а баллон закреплен капиллярной трубкой вверх.

Установка терморегулирующего вентиля в отопительных магистралях

Основным элементом централизованной системы является тепловой радиатор или конвектор. Наиболее удобно регулировать величину потока горячей жидкости в каждом устройстве отдельно.

Схема подключения терморегулирующих вентилей в системе отопления

*

Для надежной регулировки теплопотока на каждый радиатор устанавливаются два устройства – на входе и выходе. В однотрубных системах, где движение рабочей среды по элементам последовательное, необходима установка байпасов. Это обводные трубки, обеспечивающие функционирование магистрали в случае перекрытия или засорения одного из радиаторов.

Возможные ошибки монтажа и неисправности

Основные проблемы в работе ТРВ возникают из-за неправильного места установки самого вентиля или термобаллона. На точность регулировки могут влиять и малозначительные факторы при закреплении элементов устройства.

Возможные ошибки при монтаже ТРВ для холодильной установки

Одной из распространенных проблем является неточная передача термобаллоном требуемого давления на термоэлемент. Причиной этого может быть его плохой контакт с выходным трубопроводом испарителя. Место установки должно быть тщательно зачищено и покрыто теплопроводной пастой. Нельзя располагать термобаллон на сварных швах, соединяющих трубы.

Сам датчик должен быть изолирован, чтобы окружающий воздух не влиял на его температуру.

Полный выход терморегулирующего вентиля зачастую происходит из-за применения моделей с внутренними элементами из пластика.

Журнал

HVP - BEAMA удовлетворяет входящее требование TRV

В ПОЛЕ ЗРЕНИЯ
BEAMA АДРЕСАЕТ ВХОДЯЩИЕ ТРЕБОВАНИЯ К TRV

Колин Тимминс, менеджер портфеля H&V в BEAMA, рассматривает поступающие требования к установкам TRV при замене котлов.

Недавние консультации по Части L Строительных норм для существующих домов как в Англии, так и в Уэльсе предлагают небольшой, но значительный шаг вперед в решении одной из областей, которые можно разумно назвать низко висящими фруктами для повышения уровня энергоэффективности в наших домах. .

Это изменение потребует установки отдельных регуляторов температуры в помещении, таких как термостатические радиаторные клапаны (TRV), при замене котла.
Один из давних пробелов в Части L, которая касается энергосбережения, заключается в том, что добавление TRV при замене котла появилось в Руководстве по соблюдению требований к бытовым зданиям только как рекомендация «надлежащей практики».

Это несмотря на то, что TRV являются проверенной мерой по энергосбережению и очень рентабельны, когда они выполняются в то время, когда система отопления уже осушена.Что еще хуже, это фактически был шаг назад по сравнению с правилами 2006 года, когда системы требовалось зонировать, а установка TRV в спальнях была обычным средством соблюдения.

На этот раз новая версия Части L как для Англии, так и для Уэльса предлагает, чтобы требование в отношении «саморегулирующихся устройств», таких как TRV, для новых систем и с заменой котла, было введено как новое постановление, а не как часть руководства.

Фактически это станет краеугольным камнем соблюдения, поскольку они будут четким юридическим требованием, а не просто перечисленным как то, что «должно» быть сделано.Конечно, бывают ситуации, когда такое дополнение к существующей системе может быть технически или экономически нецелесообразным, но, как прямо говорится в валлийских правилах, «при нормальных обстоятельствах установка термостатических вентилей для радиаторов в мокрых системах центрального отопления, скорее всего, будет невозможной. экономически целесообразно ».

Также возможны другие способы соответствия, такие как комнатные термостаты в каждой комнате, что обычно используется, например, в системах напольного отопления, но вполне вероятно, что в большинстве случаев установка TRV на существующие радиаторы будет способом соблюдения.Терминология, используемая в новых правилах «саморегулирующихся устройств», ранее обычно не использовалась и фактически возникла в рамках переговоров в Европейском союзе по Директиве об энергетических характеристиках зданий, которая была пересмотрена в 2018 году.

За несколько лет до этого BEAMA и его европейский партнер eu.bac определили, что правила, регулирующие установку индивидуальных регуляторов температуры, были частичными по всей Европе, несмотря на то, что это устоявшаяся технология энергосбережения, которая фактически была обязательной в немецких домах с 70-х годов. .

BEAMA работала над разработкой официального документа, объясняющего преимущества такого беспроигрышного политического действия как для окружающей среды, так и для потребителей, а также проводила исследования и анализ, чтобы показать масштаб потенциальной экономии - как финансовой, так и с точки зрения выбросов углерода. В конечном итоге эти документы убедили политиков по всей Европе воспользоваться этой в значительной степени упущенной возможностью.

К чести Великобритании, несмотря на выход из ЕС, правительство обязалось реализовать то, что оно ранее согласовало в пересмотре EPBD.Тем не менее, было бы трудно утверждать, что мы работаем над «ведущими в мире» экологическими стандартами, если бы мы отстали от остальных стран ЕС в требованиях к контролю температуры в отдельных помещениях, которые являются такой простой, но фундаментальной мерой энергосбережения.

Новые версии Части L Строительных норм должны вступить в силу в Англии и Уэльсе в начале 2022 года. Подробности для Шотландии и Северной Ирландии еще не определены, но ожидается, что они последуют их примеру в этом отношении.

Новые правила послужат толчком для многих монтажников, которые долгое время считали добавление TRV во время замены котла важным фактором в обеспечении клиентов эффективной системой, но рисковали быть подорванными другим контентом. только для обеспечения минимальных стандартов. Наконец-то в этом отношении будут созданы равные условия для игры.

Желательно стремиться к передовой практике. Одна из распространенных причин, по которым добавление TRV к существующей системе может оказаться нецелесообразным, - это отсутствие совместимости со старыми радиаторными фитингами или просто состояние этих радиаторов.

В таких случаях замена таких радиаторов принесет пользу клиентам, как за счет облегчения установки TRV, так и за счет удаления радиатора, который, вероятно, будет иметь низкую производительность по сравнению с более новыми излучателями, особенно если он имеет накопление шлама. который со временем развился и повлияет на его работу.

Как было указано в начале, это изменение законодательства - небольшой шаг, но очень важный, который принесет пользу домовладельцам и продвинет нас вперед по пути к созданию более экологичных домов.

TRV Keymark

Для снижения затрат по сравнению с энергией важную роль играет эффективное регулирование обогрева. Задача термостатического клапана - поддерживать постоянную подачу тепла на заданном уровне.

В то же время, каждую комнату можно регулировать индивидуально, в соответствии с ее потребностями и потребностями одновременно. Таким образом, используется «свободная» энергия внутренних и внешних источников тепла, такая как солнечное излучение и потерянное тепло электронного оборудования.

EnEV (энергосберегающее регулирование) в некоторых случаях требует обратной установки с рекуперацией энергии. Все обязательства в связи с этим должны быть выполнены немедленно. Особенно те, которые уже содержались в действующем акте регулирования системы отопления. Это, в частности, относится к оборудованию с правилами для отдельных помещений (термостатические клапаны), что должно было быть выполнено с конца 1997 года.

Доверие - это хорошо - Ключевое слово лучше!

Благодаря европейскому знаку качества KEYMARK уполномоченные органы по сертификации могут предложить производителю возможность убедить клиентов в качестве своей продукции за пределами национальных границ и поддержать клиентов в их решениях о покупке.

Европейская схема сертификации термостатических радиаторных клапанов является частью системы CEN KEYMARK, в соответствии с которой продукция проверяется на соответствие европейским стандартам продукции, а ее заводское производство находится под регулярным контролем.

Используется заинтересованными членами CEN, что означает национальные институты стандартов или уполномоченные учреждения. Он находится под контролем комитета по сертификации термостатических радиаторных клапанов CEN (CCC3 / KEYMARK), поскольку представители CEN принимают участие в сертификации в этой области.Представители этих органов являются производителями и пользователями термостатических радиаторных клапанов, а также делегатами для промежуточного проведения испытаний и контроля компетентных испытательных лабораторий и органов по сертификации.

Примечание: с 01.01.2012 предыдущий знак «CENCER» был заменен на «KEYMARK». Однако его содержание не изменилось. Был применен девиз: «Все по-другому!

RT-PCR и qPCR анализ контрольных растений TRV и TRV-SlAGO1.(A) ...

Контекст 1

... через четыре недели все проростки, инъецированные TRV-SlAGO1, демонстрировали ряд фенотипических аномалий, которые не проявлялись у контрольных растений, инъецированных TRV. Как правило, большинство листочков верхних непроинъектированных сложных листьев были маленькими, узкими, асимметричными и загнутыми вниз. Некоторые из них не имели черешков (рис. 1A-1H). Большинство из них потеряли свою адаксиально-абаксиальную полярность и имели почти гладкие края (рис. 1H). Некоторые листочки TRV-SlAGO1 были почти радиальными и напоминали шнурки, а их средние жилки отросли или отделились (Рис. 1H и 1I).Более того, темно-зеленые пятна появлялись на абаксиальной стороне некоторых листочков томатов, в которые вводили TRV-SlAGO1 (рис. 1K-1M). Кроме того, средние жилки контрольных створок TRV были вогнутыми на адаксиальной поверхности, тогда как у TRV-SlAGO1 были вогнутыми на абаксиальной поверхности (Рис. 1N и 1Q). При наблюдении под сканирующим электронным микроскопом (SEM) клетки "ограниченного" листа имели столбчатую форму, напоминающую таковые средней жилки, и отличались от неправильного многоугольника контрольных клеток TRV листа (фиг. 10 и 1R).Анализ SEM также показал, что темно-зеленое пятно имеет более плотные трихомы и более глянцевую поверхность, которая больше напоминает адаксиальную сторону (рис. 1P и 1S, рис. 2). Поскольку большинство верхних неинфицированных листьев демонстрировали тяжелый фенотип, это позволяет предположить, что рекомбинантный вирус TRV-SlAGO1 переместился с семядолей на верхние листья и вызвал молчание генов. Праймеры, специфичные для TRV2, использовали как для контроля TRV, так и для растений TRV-SlAGO1. Различные размеры амплифицированных фрагментов ясно показали, что как TRV, так и рекомбинантный TRV-SlAGO1 могут эффективно реплицироваться и системно распространяться в растениях томатов и что аномальные листья были вызваны TRV-SlAGO1, а не самим TRV (фиг. 3A).Анализ qPCR показал, что уровни SlAGO1-1 и SlAGO1-2 были подавлены на 95% и 84%, что ниже в TRV-SlAGO1, чем в контроле TRV, соответственно (фиг. 3B). Недавно было обнаружено, что нарушение биогенеза ta-siRNAs и неправильная регуляция ARF3 и ARF4 у мутантов томатов ago7 вызывает градиент аберраций формы листьев, таких как скудные листья, лишенные расширения листовой пластинки [25], напоминая фенотипы TRV-SlAGO1. Однако уровни транскрипта SlAGO7 в контрольных TRV и инъецированных TRV-SlAGO1 растениях были сопоставимы (фиг. 3C).В совокупности эти результаты показывают, что специфическое подавление SlAGO1 с помощью VIGS было ответственно за аномальный фенотип томатного соединения ...

Контекст 2

... четыре недели, все проростки, инъецированные TRV-SlAGO1, демонстрировали диапазон фенотипических аномалий, которые не проявлялись у контрольных растений, которым вводили TRV. Как правило, большинство листочков верхних непроинъектированных сложных листьев были маленькими, узкими, асимметричными и загнутыми вниз. Некоторые из них не имели черешков (рис. 1A-1H).Большинство из них потеряли свою адаксиально-абаксиальную полярность и имели почти гладкие края (рис. 1H). Некоторые листочки TRV-SlAGO1 были почти радиальными и напоминали шнурки, а их средние жилки отросли или отделились (Рис. 1H и 1I). Более того, темно-зеленые пятна появлялись на абаксиальной стороне некоторых листочков томатов, в которые вводили TRV-SlAGO1 (рис. 1K-1M). Кроме того, средние жилки контрольных створок TRV были вогнутыми на адаксиальной поверхности, тогда как у TRV-SlAGO1 были вогнутыми на абаксиальной поверхности (Рис. 1N и 1Q).При наблюдении под сканирующим электронным микроскопом (SEM) клетки "ограниченного" листа имели столбчатую форму, напоминающую таковые средней жилки, и отличались от неправильного многоугольника контрольных клеток TRV листа (фиг. 10 и 1R). Анализ SEM также показал, что темно-зеленое пятно имеет более плотные трихомы и более глянцевую поверхность, которая больше напоминает адаксиальную сторону (рис. 1P и 1S, рис. 2). Поскольку большинство верхних неинфицированных листьев демонстрировали тяжелый фенотип, это позволяет предположить, что рекомбинантный вирус TRV-SlAGO1 переместился с семядолей на верхние листья и вызвал молчание генов.Праймеры, специфичные для TRV2, использовали как для контроля TRV, так и для растений TRV-SlAGO1. Различные размеры амплифицированных фрагментов ясно показали, что как TRV, так и рекомбинантный TRV-SlAGO1 могут эффективно реплицироваться и системно распространяться в растениях томатов и что аномальные листья были вызваны TRV-SlAGO1, а не самим TRV (фиг. 3A). Анализ qPCR показал, что уровни SlAGO1-1 и SlAGO1-2 были подавлены на 95% и 84%, что ниже в TRV-SlAGO1, чем в контроле TRV, соответственно (фиг. 3B). Недавно было обнаружено, что нарушение биогенеза ta-siRNAs и неправильная регуляция ARF3 и ARF4 у мутантов томатов ago7 вызывает градиент аберраций формы листьев, таких как скудные листья, лишенные расширения листовой пластинки [25], напоминая фенотипы TRV-SlAGO1.Однако уровни транскрипта SlAGO7 в контрольных TRV и инъецированных TRV-SlAGO1 растениях были сопоставимы (фиг. 3C). В совокупности эти результаты показывают, что специфическое подавление SlAGO1 с помощью VIGS было ответственно за аномальный фенотип соединения томата ...

Контекст 3

... четыре недели, все проростки, инъецированные TRV-SlAGO1, демонстрировали диапазон фенотипических аномалий, которые не проявлялись у контрольных растений, которым вводили TRV. Как правило, большинство листочков верхних непроинъектированных сложных листьев были маленькими, узкими, асимметричными и загнутыми вниз.Некоторые из них не имели черешков (рис. 1A-1H). Большинство из них потеряли свою адаксиально-абаксиальную полярность и имели почти гладкие края (рис. 1H). Некоторые листочки TRV-SlAGO1 были почти радиальными и напоминали шнурки, а их средние жилки отросли или отделились (Рис. 1H и 1I). Более того, темно-зеленые пятна появлялись на абаксиальной стороне некоторых листочков томатов, в которые вводили TRV-SlAGO1 (рис. 1K-1M). Кроме того, средние жилки контрольных створок TRV были вогнутыми на адаксиальной поверхности, тогда как у TRV-SlAGO1 были вогнутыми на абаксиальной поверхности (Рис. 1N и 1Q).При наблюдении под сканирующим электронным микроскопом (SEM) клетки "ограниченного" листа имели столбчатую форму, напоминающую таковые средней жилки, и отличались от неправильного многоугольника контрольных клеток TRV листа (фиг. 10 и 1R). Анализ SEM также показал, что темно-зеленое пятно имеет более плотные трихомы и более глянцевую поверхность, которая больше напоминает адаксиальную сторону (рис. 1P и 1S, рис. 2). Поскольку большинство верхних неинфицированных листьев демонстрировали тяжелый фенотип, это позволяет предположить, что рекомбинантный вирус TRV-SlAGO1 переместился с семядолей на верхние листья и вызвал молчание генов.Праймеры, специфичные для TRV2, использовали как для контроля TRV, так и для растений TRV-SlAGO1. Различные размеры амплифицированных фрагментов ясно показали, что как TRV, так и рекомбинантный TRV-SlAGO1 могут эффективно реплицироваться и системно распространяться в растениях томатов и что аномальные листья были вызваны TRV-SlAGO1, а не самим TRV (фиг. 3A). Анализ qPCR показал, что уровни SlAGO1-1 и SlAGO1-2 были подавлены на 95% и 84%, что ниже в TRV-SlAGO1, чем в контроле TRV, соответственно (фиг. 3B). Недавно было обнаружено, что нарушение биогенеза ta-siRNAs и неправильная регуляция ARF3 и ARF4 у мутантов томатов ago7 вызывает градиент аберраций формы листьев, таких как скудные листья, лишенные расширения листовой пластинки [25], напоминая фенотипы TRV-SlAGO1.Однако уровни транскрипта SlAGO7 в контрольных TRV и инъецированных TRV-SlAGO1 растениях были сопоставимы (фиг. 3C). В совокупности эти результаты показывают, что специфическое подавление SlAGO1 с помощью VIGS было ответственно за аномальный фенотип томатного соединения ...

Контекст 4

... участвует в регуляции экспрессии генов через RISCs [47]. В общем, гены-мишени малых РНК, таких как ARF4, мишень ta-siRNA, активируются в растениях с молчанием SlAGO1, в которых SlAGO1 действует как негативный регулятор (рис. 5).Накопление малых РНК может способствовать неорганизованной полярности в листьях TRV-SlAGO1. Есть также много генов-мишеней miRNA, которые не обнаруживают значительных изменений в SlAGO1-молчащих растениях (S2 Рис). Эти результаты согласуются с результатами, полученными Martienssen et al., Которые обнаружили, что только от 1 до 6% генов демонстрируют значительные изменения экспрессии у мутанта Arabidopsis ago1 в микрочипах, в которых несколько известных мишеней miRNA значительно увеличились, тогда как другие показали незначительные изменения или их отсутствие. [48].Фактор регуляции роста 1 (GRF1), который регулируется miR396 и может достигать более высоких уровней у растений с молчанием SlAGO1, обнаруживает заметное снижение (S1 фиг.) [33]. Фенотип листочков TRV-SlAGO1 был сходен с фенотипом мутантов с потерей функции GRFs, которые были меньше контрольных [49]. По этой причине здесь предполагается, что GRF1 может контролироваться другими факторами, которые играют более существенные роли, чем SlAGO1. Кроме того, AGO1 может частично опосредовать репрессию трансляции некоторых мишеней малых РНК [50]....

jmarsik / ad-eurotronic-trv-valvepos: EUROTRONIC TRV Помощник по положению клапана - это приложение AppDaemon, которое позволяет получить доступ к значению положения клапана (%) из Z-Wave TRV в Home Assistant

Небольшое вспомогательное приложение AppDaemon для EUROTRONIC Z-Wave TRV.

SPIRIT Z-Wave Plus определенно поддерживается: Страница продукта | Запись в базе данных устройств Z-Wave

Возможно, подойдут и другие TRV от EUROTRONIC.

Характеристики

  • обеспечивает доступ к значению положения клапана (%) из значений Z-Wave TRV в Home Assistant
    • обычно Home Assistant не показывает это значение (по крайней мере, в версии 0.103)
  • периодически читает файл журнала OpenZWave и анализирует оттуда значения
  • это значение полезно:
    • , если вы хотите отслеживать, что происходит, и насколько хорошо выполняется внутреннее регулирование TRV
    • для обнаружения некоторых условий, требующих внимания, например, когда клапан заклинивает и не может двигаться, или когда TRV не может определить "закрытое" положение клапана

TRV конфигурация

Для успешной работы вы должны сконфигурировать свой TRV для сообщения процентных значений открытия клапана.Перейдите в панель управления Home Assistant Z-Wave, выберите узел TRV Z-Wave, а затем в параметрах конфигурации узла измените параметр Отчет о проценте открытия клапана на некоторое разумное значение (скажем, 2-5).

Это приложение подходит для работы TRV в обычном режиме «Нагрев», когда регулирование выполняется самим TRV, а Home Assistant управляет только заданной температурой. TRV также допускает режим или предустановку «в зависимости от производителя», когда алгоритм внутреннего регулирования выключен, а внешняя система может напрямую контролировать процент открытия клапана.К сожалению, Home Assistant не поддерживает этот режим (по крайней мере, в версии 0.103), и невозможно изменить значение даже через низкоуровневые службы (например, zwave.set_node_value, даже с известным value_id).

Дополнительная информация:

Установка

Используйте HACS или загрузите каталог eurotronic-trv-valvepos из каталога apps здесь в локальный каталог приложений , затем добавьте конфигурацию, чтобы включить модуль eurotronic-trv-valvepos .

Конфигурация приложения AppDaemon

 eurotronic-trv-valvepos:
  модуль: eurotronic-trv-valvepos
  класс: EurotronicTRVValvePos
  ozw_log_path: "/config/OZW_Log.txt"
  look_for_productname: "Настенный радиаторный термостат EUR_SPIRITZ"
  refresh_seconds: 300 
Ключ Обязательно Тип По умолчанию Описание
модуль Истинно строка Название модуля, должно быть eurotronic-trv-valvepos
класс Истинно строка Имя класса приложения, должно быть EurotronicTRVValvePos
ozw_log_path Ложь строка / config / OZW_Log.txt Путь к файлу журнала OZW, по умолчанию работает в Hass.io
look_for_productname Ложь строка EUR_SPIRITZ Настенный термостат радиатора Название продукта Z-Wave, которое нужно искать при поиске объектов устройства TRV Z-Wave, по умолчанию работает для SPIRIT Z-Wave Plus TRV
refresh_seconds Ложь целое число 300 Секунды между сканированием журнала

Поиск и устранение неисправностей

Ищите ошибки в журнале AppDaemon, это приложение регистрирует всю необходимую информацию.Вы даже можете включить вход в систему DEBUG, чтобы увидеть немного больше.

Примеры данных

Ниже приведен снимок экрана с Grafana, на котором показаны данные одного TRV, выполняющего свои обязанности.

в поддержку более эффективной Британии - ВРЕМЕННЫЕ ИЗМЕНЕНИЯ В СТРОИТЕЛЬНЫХ ПРАВИЛАХ ЧАСТЬ L

Возможно, вы заметили недавние правительственные объявления о будущем отопления домов в связи с целевым нулевым показателем Великобритании, а также о том, что можно сделать для повышения эффективности существующих систем за это время.Реми Вольпе, управляющий директор Drayton, обсуждает две новые меры, которые могут быть введены; балансировка системы и обязательная установка термостатических вентилей на радиаторах, и как это может повысить эффективность.

Промежуточные дополнения, о которых следует помнить в части L

После консультации по стандартам Future Homes Standard правительство объявило о ряде новых мер, которые, как ожидается, будут внесены в Часть L Строительных норм. Консультации подтверждают, что дома, построенные с 2025 года, должны быть «готовы к нулевому выбросу углерода» и обеспечивать сокращение выбросов углерода на 75-80% по сравнению с домами, построенными в соответствии с текущими стандартами.Учитывая масштаб изменений, требуемых в период с настоящего момента до 2025 года, правительство подтвердило, что временная поправка к Части L Строительных правил вступит в силу в 2021 году.

Эти временные стандарты будут охватывать важные области, в том числе улучшение минимальных стандартов для систем отопления в новых зданиях и модернизированных объектах, направленных на повышение энергоэффективности.

Ключевым предложением является введение нового правила в Строительные правила 2010, которое будет означать, что существующие жилые здания должны иметь термостатические радиаторные клапаны (TRV) на радиаторах в каждой комнате при замене отопительного прибора, такого как бойлер.

TRV чрезвычайно важны для оптимизации производительности системы отопления и сокращения потерь энергии, а также помогают создать сбалансированную систему. Это особенно важный фактор, поскольку недавние изменения были внесены в контрольный список для ввода в эксплуатацию котла Benchmark - который действует как документальное свидетельство правильной установки и обслуживания котла - требуя, чтобы система была правильно сбалансирована (или повторно сбалансирована) как часть любой новой установки котла. чтобы помочь установить стандарт в отрасли.

Почему важна балансировка системы?

Балансировка системы необходима для бытовых систем отопления, так как каждый радиатор в доме получает равный поток горячей воды, помогая обеспечить оптимальную эффективность и максимальный комфорт клиентов.

Если балансировка не выполняется, клиенты могут обнаружить, что радиаторы, расположенные дальше всего от котла, не нагреваются до желаемой температуры, так как они не получают достаточного количества горячей воды. В большинстве случаев многие домовладельцы, вероятно, увеличат отопление, пытаясь довести эти более холодные радиаторы до определенной температуры, однако это приводит к тому, что радиаторы находятся ближе к котлу, а также к потере энергии.

Как легко сбалансировать систему

Один из самых простых способов сбалансировать систему - использовать радиаторные клапаны в процессе установки. Многие TRV на рынке разработаны с учетом этого, что позволяет установщикам устанавливать тепловую мощность радиатора, которую следует определять для каждой комнаты на основе ожидаемых потерь тепла.

Как производитель, стремящийся повысить производительность систем отопления по всей стране, Drayton уже предлагает решение, которое поможет установщикам соответствовать новым ожидаемым требованиям Части L и Контрольному списку контрольных показателей.Наряду с широким спектром высокоэффективных клапанов TRV, таких как популярный TRV4, Drayton также предлагает балансировочный ключ, который можно использовать для балансировки расходов системы от TRV, и включает пронумерованные индикаторы, чтобы легко определить, в каком положении находится клапан. , где 1 - самый низкий расход, а 6 - самый высокий.

Слева: Drayton TRV4 Anthracite, новейшее дополнение к линейке TRV4, которое позволяет балансировать систему с TRV. Справа: балансировочный ключ Drayton TRV4, наш быстрый и простой инструмент для балансировки расхода от TRV.

Балансировка расхода от TRV надежна, точна и сохраняется во всей системе, предотвращая риск отмены балансировки, и нет необходимости в трудоемкой и неточной балансировке через запорные заслонки. При использовании балансировочного ключа Дрейтона установщикам также не требуется сливать воду из системы, что упрощает выполнение этого процесса, который должен выполняться в качестве стандартной практики.

Системы отопления, отвечающие требованиям будущего

Поскольку котлы представляют собой углеродно-голодную технологию, эти изменения гарантируют, что они будут работать наиболее оптимальным и энергоэффективным способом.Эти изменения в правилах прокладывают путь для новых технологий, таких как тепловые насосы, которые неизбежно станут нашим основным источником тепла после того, как будут выведены из эксплуатации традиционные газовые котлы. Однако для успешного перехода на низкоуглеродные источники тепла еще предстоит проделать большую работу.

Важно, чтобы больше инженеров-теплотехников начали расширять свои знания о мерах по повышению энергоэффективности, таких как установка TRV и балансировка системы, поскольку и то, и другое будет ключом к максимальному повышению эффективности тепловых насосов и других отопительных технологий будущего.Дрейтон находится в авангарде разработки технологий управления энергетическим переходом и приветствует нормативные изменения, которые позволят этим технологиям развиваться и использоваться по всей стране, способствуя быстрому продвижению страны к нулевому уровню.

Назад к новостям

Controlling Steam Radiators - The New York Times

Во время учебы в докторантуре. Шесть или семь лет назад Маршалл Кокс, изучавший электротехнику в Колумбийском университете, регулировал температуру в своей комнате зимой, как это делают большинство жителей Нью-Йорка с помощью паровых радиаторов.Он открыл окно.

Но затем его брат-близнец Джереми переехал в Нью-Йорк, чтобы танцевать в «Come Fly Away» на Бродвее. Его брат «постоянно», - сказал мистер Кокс, - жаловался, что «он закипал или замерзал, много раз и то, и другое в течение ночи». Это побудило Маршалла Кокса изобрести Cozy - крышку радиатора, которая может удерживать тепло в перегретой комнате и переносить ее в недогретую комнату. Cosy, которую г-н Кокс описал как «прославленную прихватку для духовки» и которая продается на ограниченной основе, выиграла $ 220 000 M.ЭТО. Премия «Чистая энергия» 2012 года.

Победа Cosy понятна. Он решает проблему, которая беспокоит жителей Нью-Йорка с начала 1900-х годов, когда в соответствии с директивой Совета здравоохранения, требовавшей открывать окна даже в самые холодные зимние дни, требовались радиаторы увеличенного размера. Это было тогда, когда «свежий воздух» считался универсальным панацеей.

А вот нынешним жильцам квартир и кондоминиумов страдать не приходится. Благодаря современным технологиям, программам энергосбережения и горстке мастеров, разбирающихся в вековых сантехнических технологиях, существует множество способов приручить вышедшие из строя радиаторы.

Большая часть проблемы перегрева Нью-Йорка может быть связана с эпидемией испанского гриппа 1918 года, сказал Дэн Холохан, историк отопления и автор 18 книг по этой теме. «Впервые я заметил это в своих инженерных книгах 1920-х годов, - сказал он. «Авторы упоминают« движение свежего воздуха »и предупреждают, что и котлы, и радиаторы теперь должны были быть намного больше из-за необходимости держать окна открытыми по приказу Совета здравоохранения».

Считалось, что свежий воздух защищает от болезней, передающихся воздушно-капельным путем, таких как грипп.Несмотря на то, что «испанский грипп» утих в 1920 году, инженерные стандарты, предписывающие использование радиаторов увеличенного размера, остались.

Теперь, когда старший сантехник Джон Катанео отвечает на звонок, «Я мог бы написать сценарий почти для каждого звонящего», - сказал он. «Я киплю, не могу спать по ночам, и здание бесполезно».

Теоретически паровое отопление - это просто, эффективно и легко в обслуживании. Бойлер нагревает воду примерно до 212 градусов. Он становится паром под давлением и проходит через контур труб.Часть пара попадает в радиаторы, подключенные к контуру. Пар передает тепло металлу радиатора, который нагревает воздух в помещении. Эта передача заставляет пар остывать, и он снова превращается в воду, называемую конденсатом. Конденсат возвращается в котел для повторения цикла.

Но правильно работающая паровая система отопления - это тонкий баланс. Многочисленные радиаторы подключены к единому источнику пара. Сложно подать нужное количество пара в каждый радиатор, когда для каждого может потребоваться разное количество.Уменьшение количества пара в одной комнате может привести к чрезмерному выбросу пара в другую. «Это действительно просто, - сказал г-н Холохан, - но на практике очень легко облажаться».

Годы частичного ремонта часто приводят к ударам, лязгам и неравномерному нагреву, столь обычным в довоенных зданиях.

Шаги, необходимые для улучшения перегретой квартиры, зависят от того, какая у вас радиаторная система - однотрубная или двухтрубная.

В двухтрубной системе тепло отводится клапаном, который представляет собой двухпозиционную ручку, пропускающую пар.Клапаны по своей природе регулируемые.

В более распространенной однотрубной системе тепло отводится вентиляционным отверстием, которое выглядит как миниатюрная торпеда, торчащая из конца радиатора и выпускающая воздух, освобождая место для проникновения пара.

Один потенциал fix - это вентиляционное отверстие, позволяющее контролировать температуру радиатора. «В однотрубной системе регулируемое вентиляционное отверстие может быть очень недорогим решением; это часть 25 долларов », - сказал Хантер Ботто, бывший президент Ассоциации подрядчиков по сантехническому отоплению и охлаждению штата Нью-Йорк.

Однако стоимость рабочей силы поднимает цену. По словам Пола Шея, главного сантехника и консультанта по отоплению, вам придется заплатить от 250 до 750 долларов за детали и установку регулируемых вентиляционных отверстий на каждом радиаторе.

Проблема с клапанами и регулируемыми вентиляционными отверстиями заключается в том, что ими легко злоупотреблять. «Люди прибегают к крайностям», - сказал г-н Катанео. Когда людям становится холодно, они полностью включают вентили, пока в комнате не становится слишком жарко, а затем полностью их выключают. По его словам, из-за массы радиатора «в этой штуке осталось еще полчаса тепла.«Когда в комнате становится слишком холодно, процесс повторяется. «Лучше всего установить их и дать им несколько часов, чтобы они отреагировали на корректировку», - сказал г-н Катанео. «Эти устройства могут обеспечить большой комфорт - им просто нужно время, чтобы поработать».

Эти проблемы можно уменьшить, используя правильно установленный термостатический радиаторный клапан, известный в торговле как TRV. Эти клапаны оснащены термостатом, который автоматически включает или выключает клапан в зависимости от температуры в помещении. По словам сантехников, недостатком является то, что клапаны TRV часто устанавливаются неправильно и менее долговечны, чем более простые регулируемые вручную клапаны.

Существуют также распространенные проблемы, связанные с нагревом пара, которые TRV не может исправить. Паровые системы смешивают металлические трубы, воду и воздух - рецепт ржавчины, которая может повредить клапаны и вентиляционные отверстия. Если ржавчина не покрывает их, маляры печально известны тем, что срывают их слоем краски.

В то время как жители квартир могут попытаться управлять своим собственным отоплением, предпочтительным решением проблемы перегрева в квартирах в Нью-Йорке является обслуживание всей системы, за которое многие домовладельцы не хотят платить, но город Нью-Йорк предпринимает шаги, которые могут способствовать модернизации.

Паровые системы обогревают примерно 70 процентов больших зданий в городе и являются одними из основных источников потерь энергии. Чтобы справиться с этой неэффективностью использования энергии, местный закон № 87 Нью-Йорка в конечном итоге потребует, чтобы 23 400 зданий площадью 50 000 квадратных футов и более прошли энергоаудит.

Хотя местное законодательство не требует от домовладельцев капитального ремонта отопления, энергоаудиты покажут, сколько можно сэкономить за счет модернизации, и позволят арендодателям узнать, какая помощь может быть предоставлена ​​для оплаты обновлений.

Кооперативная доска 860 и 870 Западная 181-я улица, пара кирпичных довоенных зданий в непосредственной близости от моста Джорджа Вашингтона, не дождалась обязательного энергоаудита для модернизации системы отопления. Здание прошло энергетическую оценку и в 2012 году подало заявку на получение государственных средств через Управление энергетических исследований и разработок штата Нью-Йорк для обновления здания, включая капитальный ремонт системы парового отопления.

Инженеры оценили экономию от модернизации теплоцентрали, которая включала изоляцию труб и котла, а также добавление ТРВ на 126 блоках, в более чем 36 000 долларов в год.Власти штата предоставили 63000 долларов на эти и другие обновления, которые помогли покрыть расходы. И комфорт - это расплата. «Иметь TRV, где мы можем регулировать наши радиаторы, это действительно здорово», - сказала Джейн Мейзел, член правления и учитель кооператива. За эти годы г-жа Мейзел и некоторые из ее соседей сняли радиаторы отопления, чтобы избавиться от перегрева квартир. «Теперь некоторым людям, вроде меня, вероятно, придется добавить немного», - сказала она.

Что касается мистера Кокса, то у него есть бруклинская компания Radiator Labs, которая производит и продает его крышки радиаторов Cozy, которые были установлены и изучены в двух зданиях в Верхнем Манхэттене.Cosy работает как изолятор, задерживая тепло в радиаторе, поэтому оно не уходит в жаркую комнату. Когда комната охлаждается, вентилятор на Cozy циркулирует воздух, чтобы радиатор мог обогревать комнату. По данным Radiator Labs, в зданиях, протестированных на данный момент, Cozy снизил расходы на отопление на 24-33%.

На данный момент Cozies доступны только для установки во всех зданиях, и в этом случае они стоят около 500 долларов за каждый радиатор. Каждый из них должен быть настроен специально обученным специалистом для обеспечения комфорта, что делает их изготовление для отдельной квартиры дорогостоящим.Г-н Кокс работает над разработкой регулируемой модели, которую можно было бы серийно производить для работы с радиаторами разных размеров.

Направляющая термостатического клапана | Только радиаторы

Добро пожаловать в блог Only Radiators, где на этой неделе мы исследуем термостатический клапан радиатора, или TRV.

Введение в термостатические клапаны

Термостатическая головка клапана радиатора - это квинтэссенция радиаторной техники. Это один из многих возможных регуляторов отопления для регулирования температуры воздуха в помещении.Благодаря своей высокой стоимости и простоте использования, он является одним из самых популярных.

Вы найдете или установите свой TRV сбоку от радиатора, а правильная установка позволит вам максимально использовать один котел и наслаждаться разной теплотой в разных комнатах.

Как работают термостатические клапаны радиатора?

TRV - это саморегулирующийся клапан, то есть он регулирует поток воды в радиатор в зависимости от настройки.

Головка термостатического клапана находится на верхней части корпуса клапана.При изменении температуры в помещении головка клапана расширяется, регулируя штифт в корпусе клапана, чтобы он открывался или закрывался.

Расширение при нагревании помещения блокирует корпус клапана, чтобы в радиатор поступало меньше горячей воды.

Сокращение при охлаждении комнаты открывает корпус клапана, чтобы получить больше горячей воды в радиатор.

TRV бывают двух основных исполнений. Они могут быть восковыми или жидкостными, причем жидкостные термостатические радиаторные клапаны являются более поздней разработкой.Их главный плюс по сравнению с восковыми термостатическими клапанами - более быстрая регулировка в соответствии с изменениями температуры.

Как восковые, так и жидкостные термостатические радиаторные клапаны предлагают автоматическую регулировку в отличие от стандартного ручного радиаторного клапана.

Термостатические клапаны: преимущества и недостатки

Основным преимуществом термостатических радиаторных клапанов является их энергосберегающий потенциал. Максимально используйте настройки TRV, чтобы контролировать температуру в отдельных помещениях и экономить деньги, избегая перегрева, обычно вызываемого ручными клапанами.

Настраиваемые привилегии TRV

Гибкость - это движущая сила установки термостатических радиаторных клапанов в вашем доме. Избегайте потерь энергии и предотвращайте повреждения от мороза, плесени и других климатических проблем, которые могут затруднить обслуживание дома. Вот два ключевых сценария…

В более загруженных помещениях, таких как ваша гостиная, которые больше нагреваются движениями вашей семьи, приборами и даже солнцем, сияющим через окна, TRV можно установить на более низкую температуру. Ваш TRV ограничит поток воды по мере достижения нужного тепла, и вы избежите перегрева самых горячих участков вашего дома.

Затем в менее населенных помещениях, таких как запасные спальни или внешние общие зоны, вы можете установить TRV еще ниже и избежать обогрева помещений, которые не так часто используются вашей семьей.

Термостатические радиаторные клапаны демонстрируют свой экономический потенциал, позволяя вам сэкономить деньги и топливо, наслаждаясь комфортом отапливаемого дома.

Проблемы с потенциальным термостатическим клапаном радиатора

При правильном обслуживании термостатического клапана радиатора недостатков нет. Однако могут возникнуть проблемы.

Старые термостатические клапаны можно легко спутать с температурой в помещении. Сквозные сквозняки или вентиляция мешают работе клапана, вызывая гораздо более горячие или холодные показания, чем на самом деле.

И эти простые устройства могут повлиять на большие проблемы, связанные не только с поломкой, но и с поломкой.

Если термостатический клапан радиатора перестает работать при выключении, радиатор не включается и может вызвать образование конденсата, плесень, мороз и другие проблемы, связанные с холодом.И если ваш TRV сломается, когда он включен, он будет бесконечно перекачивать горячую воду через ваш радиатор и вызывать серьезный перегрев.

По этой причине выполняйте частые проверки TRV, чтобы обеспечить точное определение температуры окружающей среды, и не оставляйте их на высоких настройках, когда находитесь вне дома в течение значительного периода времени.

Ванные комнаты: A TRV №

Не совершайте ошибку, устанавливая термостатический вентиль радиатора в своей ванной комнате, так как тепло, производимое вашим душем или ванной, нанесет ущерб термостату TRV.Вместо предотвращения конденсации, которая часто мешает в ванных комнатах, TRV отключится и ничего не сделает.

Еще одно соображение - не устанавливать термостатические радиаторные клапаны в той же комнате, что и ваш основной термостат. Этот блок подключается непосредственно к вашему котлу, поэтому вы непреднамеренно создаете конкуренцию между вашим TRV и центральным термостатом. В этой монументальной битве проигрывает только домовладелец!

Обещание современного TRV

Термостатические радиаторные клапаны прошли долгий путь со времен базовых клапанов из парафина.Теперь мы рекомендуем TRV большинству наших клиентов из-за их передовых технологий, надежности и надежной настройки. Вот электронный термостатический вентиль радиатора…

Ведущие бренды домашнего отопления, такие как Honeywell, продвинули TRV дальше, чем когда-либо. Термостат с батарейным питанием и более совершенным датчиком температуры обеспечивает более высокую точность работы TRV, чем любой традиционный термостатический радиаторный клапан.

Электронные ТРВ

также можно подключать к набирающим популярность интеллектуальным системам отопления.Благодаря постоянно расширяющимся возможностям систем умного дома и Интернета вещей теперь вы можете управлять своими TRV с помощью смартфона, не вставая с дивана - или даже во время путешествия, - чтобы в вашем доме постоянно работало отопление.

Как отремонтировать термостатические клапаны

Далее мы рассмотрим две основные проблемы с термостатическим клапаном радиатора и способы их устранения. Если вам нужен более подробный совет, наша дружная команда всегда доступна по телефону для поддержки.

TRV не являются сложными элементами, и диагностика обычно очень проста.Просто потратьте несколько минут, чтобы оценить ситуацию, прежде чем искать в сети «как снять радиатор с термостатическим клапаном?» и затопление вашего дома, когда было бы достаточно простого решения.

Как открепить термостатический клапан радиатора?

Заедание клапана, вероятно, является наиболее частой проблемой термостатического клапана радиатора. Вне зависимости от того, открыт он или закрыт, в конечном итоге он доставит немало хлопот. Обычно это происходит при настройке клапана впервые за долгое время, например, после продолжительного холода или лета (часто одного и того же!).

Чтобы исправить это, установите TRV на максимальное значение, затем отверните гайку для снятия термостата вручную. Вы обнаружите поршень, который обычно плавно подпрыгивает и сжимается. Возьмите немного WD40 и нанесите немного, пока он снова не начнет плавно двигаться.

Не реагирующий поршень означает, что вам следует заменить свой TRV. Оставайтесь с нами до конца этой статьи, когда мы представим нашу подборку TRV, занимающих лидирующие позиции на рынке…

Термостатический клапан не включается или не выключается?

Если поршень движется плавно, но ваш TRV не работает, вероятно, внутренние детали капут.Это случается время от времени, особенно в старых моделях, поэтому воспользуйтесь этой возможностью, чтобы модернизировать домашнее отопление и воспользоваться правильной функцией TRV. Установите новый TRV, убедитесь, что клапан работает, и вас ждут годы беспроблемного модулированного отопления.

Чтобы не узнать, что ваш термостатический клапан сломан слишком поздно, а также предотвратить заедание TRV, сезонно проверяйте и смазывайте поршень клапана. Также важно, чтобы вентиляционные отверстия вокруг головки клапана были свободны от пыли и другого мусора, так как это может снизить точность показаний TRV.

Стоит ли иметь TRV в моем доме?

Совершенно верно! В собственности с несколькими радиаторами, обогревающими помещения с различной интенсивностью движения, термостатические радиаторные клапаны - это легкая задача! Тепло там, где хочешь, никаких потерь там, где нет.

Благодаря простому техническому обслуживанию, о котором мы упоминали, ваши TRV будут безупречно работать в течение многих лет. А если у вас есть интеллектуальная система отопления дома, набор электронных термостатических радиаторных клапанов станет вашим лучшим решением для значительной экономии энергии и денег.

Помогите окружающей среде, заботясь о собственном обогреве. Вот почему наше правительство поощряет использование TRV в новых строительных нормах. Мы в Only Radiators глубоко заботимся о сохранении нашей планеты - по этой причине мы полностью поддерживаем TRV!

Наш ассортимент термостатических клапанов для радиаторов

Просмотрите наш полный ассортимент радиаторных клапанов и откройте для себя идеальный продукт для отопления вашего дома уже сегодня.

А пока давайте взглянем на несколько наших бестселлеров..

.