Пусковая обмотка и рабочая: Чем отличаются рабочая и пусковая обмотки?

Содержание

Однофазный асинхронный электродвигатель

Дмитрий Левкин

  • Однофазный электродвигатель с пусковой обмоткой
    • Конструкция однофазного асинхронного двигателя
    • Принцип работы однофазного двигателя
    • Пуск однофазного двигателя
    • Подключение однофазного двигателя
  • Однофазный электродвигатель с экранированными полюсами
  • Электродвигатель с асимметричным магнитопроводом статора

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор – вращающаяся часть электродвигателя, статор – неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга.

Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой “беличьей клеткой”. Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр
    – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр – в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр

, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = s

пр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 – активное сопротивление стержней ротора, Ом,
  • x2обр – реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему М

обр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой – однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются – конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами – двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами – короткозамкнутый в виде “беличьей” клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф” – по экранированной части полюса. Поток Ф” наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф”, создавая результирующий поток в экранированной части полюса Фэ=Ф”+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор – короткозамкнутый типа “беличья клетка”.

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Основные параметры электродвигателя

Общие параметры для всех электродвигателей

  • Момент электродвигателя
  • Мощность электродвигателя
  • Коэффициент полезного действия
  • Номинальная частота вращения
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

    Библиографический список

  • М. М.Кацман. Электрические машины и электропривод автоматических устройств: Учебник для электротехнических специальностей техникумов.- М.: Высш. шк., 1987.
  • ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Содержание статьи

  • 1 Асинхронный или коллекторный: как отличить
    • 1.1 Как устроены коллекторные движки
    • 1.2 Асинхронные
  • 2 Схемы подключения однофазных асинхронных двигателей
    • 2.1 С пусковой обмоткой
    • 2.2 Конденсаторный
      • 2.2.1 Схема с двумя конденсаторами
      • 2.2.2 Подбор конденсаторов
      • 2.2.3 Изменение направления движения мотора

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего.  Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практикеОднофазные промышленные двигатели

— как они работают?

Что бы мы были без электродвигателя?

Эти машины дали нам все, от освещения и охлаждения до сверхбыстрых электромобилей, и все это путем преобразования электроэнергии в механическое движение. Существует много типов электродвигателей, но двигатель переменного тока остается обычным явлением в промышленности благодаря своей элегантности и проверенной временем производительности. Эти двигатели используют переменный ток и физику электромагнетизма для создания мощности вращения и бывают разных типов в зависимости от области применения. В этой статье будут рассмотрены однофазные промышленные двигатели, которые являются опорой современного мира и обеспечивают питание многих полезных инструментов. Этот двигатель, его принципы работы и его характеристики будут обсуждаться, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.

Что такое однофазные двигатели?

Однофазные двигатели представляют собой двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают почти так же, как работают двигатели с короткозамкнутым ротором, фазным ротором и другими многофазными двигателями, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о двигателях с короткозамкнутым ротором, фазным ротором и асинхронных двигателях). «Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, использующих однофазные входы. Они обычно встречаются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статор, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем роторы других конструкций. Им также требуется стартер, так как использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.

Как работают однофазные двигатели?

В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-разному. В трехфазных двигателях 120-градусное разделение фаз между тремя переменными токами, протекающими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, созданное только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными). в ориентации или «вверх-вниз»). Это аппроксимирует вращающееся поле, но не полностью. Этим двигателям необходимо дать начальный «толчок» или почувствовать силу «в противофазе» с фазой статора, чтобы произошло начальное движение ротора. Неподвижный ротор не почувствует никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз полностью компенсируют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. д.), которое затем создает смоделированное вращающееся магнитное поле для запуска двигателя. Более подробную информацию об этих пускателях можно найти в нашей статье о пускателях двигателей.

Типы однофазных двигателей

Однофазный двигатель относится только к типу используемого источника питания, а не к конкретной схеме статор-ротор-стартер. Многие характеристики других двигателей переменного тока применимы при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут указаны различные типы однофазных двигателей, чтобы можно было применить общие принципы к этим конкретным конструкциям.

Двигатели с расщепленной фазой

Двигатели с расщепленной фазой имеют вспомогательную обмотку вне катушки статора, чтобы обеспечить начальную разность фаз, необходимую для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта двухфазная обмотка даст начальный толчок для запуска вращения, а основная обмотка будет поддерживать работу двигателя. Затем пусковая обмотка должна быть отключена (обычно с помощью центробежного выключателя на выходном валу), как только двигатель достигнет определенного процента от полной скорости (около 75% от номинальной скорости). Повышение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти выключатели необходимы для правильной и надежной работы двухфазных двигателей.

Конденсаторный пуск и конденсаторный пуск-двигатели с рабочим конденсатором

В этих типах однофазных двигателей конденсаторы рядом со вспомогательной обмоткой обеспечивают разность фаз, необходимую для начала вращения в этих двигателях. Они похожи на двигатели с расщепленной фазой, но используют емкость вместо сопротивления для смещения фазы стартера. В двигателях с конденсаторным пуском центробежный переключатель отключает пусковой конденсатор, когда двигатель достигает определенной скорости (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Затем пусковой конденсатор ускоряет запуск двигателя, а рабочий конденсатор переключается, когда двигатель достигает номинальной скорости.

Двигатели с постоянно разделенными конденсаторами

В двигателях с разделенными постоянными конденсаторами используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного выключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, обычный в двух предыдущих конструкциях. Однако эти двигатели выигрывают от того, что им не нужен пусковой механизм (переключатель, кнопка и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа. Двигатели с постоянным конденсатором также являются реверсивными и, как правило, более надежны, чем другие однофазные двигатели.

Двигатели с экранированными полюсами

Этот тип однофазного двигателя не использует никаких обмоток или пускателей для запуска двигателя. Вместо этого в этом двигателе используется конфигурация, показанная на рис. 1 ниже:

.

Рис. 1: Расположение двигателя с экранированными полюсами. Обратите внимание, что заштрихованные катушки являются просто продолжением основной обмотки статора.

Этот двигатель более прост, чем другие однофазные двигатели, так как он не требует дополнительных пусковых цепей или переключателей. Корпус двигателя с С-образным сердечником изготовлен из магнитопроводящего материала (обычно из железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затеняющих» полюса создаются путем удлинения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-сердечник, он «затеняет» намотанные половины, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток). Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.

Применение и критерии выбора

В некоторых случаях требуются специальные однофазные двигатели. Таблица 1 качественно показывает рабочие характеристики каждого типа двигателя.

Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.

 

Пусковой момент

Эффективность

Надежность

Стоимость

Двухфазный двигатель

Низкий

Низкий

Низкий

Низкий

Конденсатор-пуск

Средний

Средний

Высокий

Средний

Постоянно делящийся конденсатор

Низкий

Высокий

Высокий

Средний

Конденсатор пуск-пуск конденсатора

Высокий

Высокий

Высокий

Высокий

Затененный столб

Низкий

Низкий

Низкий

Низкий

 

 
Двигатели с расщепленной фазой

имеют относительно простую конструкцию, что снижает их стоимость и производительность. Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с дробной мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота циклов; двигатели с расщепленной фазой почти наверняка сгорят при таком использовании.

Двигатели с конденсаторным пуском

имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие частоты циклов. В результате они более широко применимы и являются опорой в промышленных двигателях общего назначения. К ним относятся конвейеры с ременным приводом, большие воздуходувки и редукторы, а также многие другие. Их основным недостатком является их стоимость, поскольку они дороже, чем двигатели с расщепленной фазой.

Двигатели с постоянно разделенными конденсаторами, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и обладают превосходным КПД и надежностью. Они реверсивны благодаря отсутствию пускового механизма и могут регулировать скорость. Их единственный существенный недостаток заключается в том, что они не могут работать с высоким крутящим моментом, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любых устройств с низким крутящим моментом, требующих мгновенного реверса.

Двигатели с конденсаторным пуском и конденсаторным пуском сочетают в себе преимущества двигателей с постоянным конденсатором и конденсаторного пуска при удвоенной стоимости. Они могут питать устройства, которые слишком сложны для других однофазных двигателей, таких как воздушные компрессоры, насосы высокого давления, вакуумные насосы, устройства мощностью 1-10 л.с. и т. д., используя их высокий пусковой момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если приоритетными являются мощность, надежность и эффективность, а стоимость менее важна, рассмотрите этот тип однофазного двигателя.

Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку их просто производить и дешевле заменить, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с малой мощностью. К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. д. Если для проекта требуется лишь незначительная мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.

Резюме

В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

 

Источники:
  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://people.ucalgary.ca
  5. https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
  6. https://www.electrical4u.com/types-of-однофазный-индукционный-мотор/

Другие товары для двигателей

  • Все о бесщеточных двигателях постоянного тока: что это такое и как они работают
  • Все о двигателях с постоянными магнитами — что это такое и как они работают
  • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
  • Все о шунтирующих двигателях постоянного тока: что это такое и как они работают
  • Все о шаговых двигателях — что это такое и как они работают
  • Шаговые двигатели
  • и серводвигатели — в чем разница?
  • Все о контроллерах двигателей переменного тока — что это такое и как они работают
  • Синхронные двигатели
  • и асинхронные двигатели — в чем разница?
  • Бесщеточные двигатели
  • и щеточные двигатели — в чем разница?
  • Кто изобрел паровой двигатель? Урок промышленной истории
  • Все о двигателях с электронным управлением: что это такое и как они работают
  • Двигатели постоянного тока
  • и серводвигатели — в чем разница?
  • Шаговые двигатели
  • и двигатели постоянного тока — в чем разница?
  • Все о контроллерах серводвигателей — что это такое и как они работают
  • Что такое трехфазный двигатель и как он работает?
  • ECM Motors и PSC Motors — в чем разница?
  • Все о устройствах плавного пуска двигателей: что это такое и как они работают
  • Все о контроллерах двигателей постоянного тока — что это такое и как они работают
  • Основы тестирования двигателя (и ротора)
  • Что такое штамповка двигателя и как это работает?
  • Все о двигателях с дробной мощностью

Больше из Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Однофазные асинхронные двигатели



ЦЕЛИ

• описывать основные принципы работы следующих типов асинхронных двигателей:

  • двигатель с расщепленной фазой (как с одним, так и с двумя напряжениями)
  • конденсаторный пуск, асинхронный двигатель (как одинарного, так и двойного напряжения)
  • запуск конденсатора, запуск двигателя с конденсатором с одним конденсатором
  • конденсаторный пуск, конденсаторный двигатель с двумя конденсаторами
  • конденсаторный пуск, конденсаторный двигатель с автотрансформатором с один конденсатор

• сравнить двигатели в списке цели 1 в отношении пуска крутящий момент, скоростные характеристики и коэффициент мощности при номинальной нагрузке.

Двумя основными типами однофазных асинхронных двигателей являются двухфазные двигатель и конденсаторный двигатель. Оба типа однофазных асинхронных двигателей обычно имеют дробную номинальную мощность. Используется двухфазный двигатель. для работы таких устройств, как стиральные машины, небольшие водяные насосы, масляные горелки и другие виды небольших нагрузок, не требующих большого пускового момента. Конденсаторный двигатель обычно используется с устройствами, требующими сильного пуска. крутящий момент, такие как холодильники и компрессоры. Оба типа однофазных асинхронные двигатели относительно дешевы, имеют прочную конструкцию; и показать хорошие эксплуатационные характеристики.

КОНСТРУКЦИЯ РАСПРЕДЕЛЕННОГО АИНХРОННОГО ДВИГАТЕЛЯ

Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора, центробежный переключатель, расположенный внутри двигателя, два корпуса торцевых щитов подшипники, поддерживающие вал ротора, и литая стальная рама в которой запрессован сердечник статора. Два торцевых щита крепятся болтами к литая стальная рама. Подшипники, размещенные в торцевых щитах, удерживают ротор центрирован внутри статора, так что он будет вращаться с минимальным трением и без ударов или трения сердечника статора.

Статор двухфазного двигателя состоит из двух обмоток, удерживаемых на месте. в пазах многослойного стального сердечника. Две обмотки состоят из изолированных Катушки распределены и соединены так, чтобы образовать две обмотки, расположенные на расстоянии 90 электрических градусов друг от друга. Одна обмотка является рабочей обмоткой, а вторая обмотка является пусковой обмоткой.

Рабочая обмотка состоит из изолированного медного провода. Он размещен в нижней части пазов статора. Сечение провода в пусковой обмотке меньше, чем у рабочей обмотки. Эти катушки расположены сверху катушек рабочей обмотки в пазах статора, ближайших к ротору.

Пусковая и рабочая обмотки соединены параллельно однофазной линии при запуске двигателя. После того, как двигатель разгоняется до скорости, равной примерно от двух третей до трех четвертей номинальной скорость, пусковая обмотка автоматически отключается от сети с помощью центробежного переключателя.

Ротор двигателя с расщепленной фазой имеет ту же конструкцию, что и трехфазного асинхронного двигателя с короткозамкнутым ротором. То есть ротор состоит цилиндрического сердечника, собранного из стальных пластин. Медные стержни установлен вблизи поверхности ротора. Стержни припаиваются или привариваются к два медных торцевых кольца. В некоторых двигателях ротор представляет собой цельный литой алюминий. единица.

илл. 1 показан типичный ротор с короткозамкнутым ротором для однофазного индукционного двигателя. мотор. Этот тип ротора требует минимального обслуживания, так как нет обмотки, щетки, контактные кольца или коммутаторы. Обратите внимание на рисунок, что роторные вентиляторы являются частью узла короткозамкнутого ротора. Эти роторы вентиляторы поддерживают циркуляцию воздуха через двигатель, чтобы предотвратить значительное увеличение в температуре обмоток.


ил. 1 Литой алюминиевый ротор с короткозамкнутым ротором.

Центробежный переключатель установлен внутри двигателя. Центробежный переключатель отключает пусковую обмотку после достижения ротором заданного скорость, обычно от двух третей до трех четвертей номинальной скорости. Выключатель состоит из неподвижной части и вращающейся части. Стационарная часть монтируется на одном из торцевых щитов и имеет два контакта, которые действуют как однополюсный, однопозиционный переключатель. Вращающаяся часть центробежного переключатель установлен на роторе.

Простая схема работы центробежного выключателя приведена в рис. 2. Когда ротор остановлен, давление пружины на волокнистом кольце вращающейся части удерживает контакты замкнутыми. Когда ротор достигает примерно трех четвертей своей номинальной скорости, центробежное действие ротора заставляет пружину сбрасывать давление на оптоволоконном кольце и контакты размыкаются. В результате пусковая обмотка цепь отключена от линии. ill 3 — типичный центробежный переключатель, используемый с асинхронными двигателями с расщепленной фазой.


ил. 2 На схеме показана работа центробежного выключателя: ротор в состоянии покоя центробежный выключатель замкнут; ротор на нормальной скорости центробежный усилие, установленное в механизме переключателя, приводит в движение ошейник и позволяет переключать контакты открыть. бол. 3 Центробежный переключатель с переключатель снят.

Принцип действия

Когда цепь асинхронного двигателя с расщепленной фазой замкнута, оба пусковая и рабочая обмотки запитываются параллельно. Потому что бег обмотка состоит из относительно большого сечения провода, ее сопротивление равно низкий. Напомним, что рабочая обмотка размещается в нижней части пазов. сердечника статора. В результате индуктивное сопротивление этой обмотки сравнительно высок из-за массы окружающего его железа. Поскольку рабочая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление, ток рабочей обмотки отстает от напряжения примерно на 90 электрические степени.

Пусковая обмотка состоит из провода меньшего сечения; следовательно, его сопротивление высокое. Так как обмотка расположена в верхней части статора пазы, масса окружающего его железа сравнительно невелика, а индуктивная реактивность низкая. Поэтому пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. В результате ток пуска обмотка почти совпадает по фазе с напряжением.

Ток рабочей обмотки отстает от тока пусковой обмотки примерно на 30 электрических градусов. Эти два тока разнесены на 30 электрических градусов друг от друга проходят через эти обмотки и вращающееся магнитное поле разработан. Это поле проходит внутри сердечника статора. Скорость магнитного поля определяется по той же методике дано для трехфазного асинхронного двигателя.

Если асинхронный двигатель с расщепленной фазой имеет четыре полюса на обмотках статора и подключен к однофазному источнику с частотой 60 Гц, синхронная скорость вращающегося поля составляет:

S = 120 х f/4

S=синхронная скорость

f = частота в герцах

S = 120 x 60 / 4 = 1800 об/мин

Поскольку вращающееся поле статора движется с синхронной скоростью, оно режет медные стержни ротора и индуцирует напряжения в стержнях беличьей клетки обмотка. Эти индуцированные напряжения создают токи в стержнях ротора. Как В результате создается поле ротора, которое взаимодействует с полем статора. создать крутящий момент, заставляющий ротор вращаться.

При разгоне ротора до номинальной скорости центробежный выключатель отключается пусковая обмотка от сети. После этого двигатель продолжает работать используется только рабочая обмотка. Рис. 4 иллюстрирует соединения центробежного выключателя в момент запуска двигателя (переключатель замкнут) и когда двигатель достигает своей нормальной рабочей скорости (переключатель разомкнут).

Двигатель с расщепленной фазой должен иметь как пусковую, так и рабочую обмотки под напряжением. когда двигатель запущен. Двигатель напоминает двухфазный асинхронный двигатель. в котором токи этих двух обмоток примерно равны 90 электрический градусов не по фазе. Однако источник напряжения однофазный; поэтому, двигатель называется двухфазным, потому что он запускается как двухфазный. двигатель от однофазной сети. Как только двигатель разгоняется до значения, близкого к своей номинальной скорости, он работает на рабочей обмотке как однофазный индукционный мотор.

Если контакты центробежного выключателя не замыкаются при остановке двигателя, тогда цепь пусковой обмотки все еще разомкнута. Когда цепь двигателя снова запитана, двигатель не запускается. Двигатель должен иметь оба пусковая и рабочая обмотки находятся под напряжением в момент замыкания цепи двигателя для создания необходимого пускового момента. Если двигатель не заводится, а просто издает низкий гудящий звук, значит цепь пусковой обмотки разомкнута. Либо контакты центробежного выключателя не замкнуты, либо есть обрыв витков пусковой обмотки. Это небезопасное состояние. Рабочая обмотка будет потреблять чрезмерный ток и, следовательно, двигатель должны быть отключены от сети.


ил. 22-4 Соединения центробежного выключателя при запуске и при работе. Асинхронный двигатель с расщепленной фазой: центробежный выключатель размыкается прибл. 75 процентов от номинальной скорости пусковая обмотка имеет высокое сопротивление и малое индуктивное сопротивление. Рабочая обмотка имеет низкое сопротивление и высокое индуктивное реактивное сопротивление. (обеспечивает фазовый угол 45-50 градусов для начального крутящий момент.)

Если механическая нагрузка слишком велика при запуске двигателя с расщепленной фазой, или если напряжение на клеммах двигателя низкое, то двигатель может не достичь скорости, необходимой для работы центробежного выключателя.

Пусковая обмотка предназначена для работы от сетевого напряжения в течение период всего три или четыре секунды, пока двигатель ускоряется до его номинальной скорости. Важно, чтобы пусковая обмотка была отключена. от линии центробежным выключателем, как только двигатель разгонится до 75 процентов от номинальной скорости. Работа двигателя при его запуске обмотки более 60 секунд может сжечь изоляцию на обмотке или привести к перегоранию обмотки.

Чтобы изменить направление вращения двигателя, просто поменяйте местами провода пусковая обмотка (5). Это обуславливает направление поля настроенные обмотками статора, чтобы стать обратными. В результате направление вращения меняется на противоположное. Направление вращения двухфазного двигателя также можно поменять местами два проводника рабочей обмотки. Обычно, пусковая обмотка используется для реверса.

Однофазные двигатели часто имеют двойное номинальное напряжение 115 В и 230 В. вольт. Для получения этих номиналов рабочая обмотка состоит из двух секций. Каждая секция обмотки рассчитана на 115 вольт. Один участок бега обмотка обычно маркируется Т и Т, а другая секция маркируется Т и Т. Если двигатель должен работать от 230 вольт, две 115-вольтовые обмотки подключены последовательно к сети 230 вольт. Если мотор должен быть работает от 115 вольт, то две 115-вольтовые обмотки соединены в параллельно линии 115 вольт.


ил. 5 Изменение направления вращения на двухфазном индукционном мотор.

Пусковая обмотка, как правило, состоит только из одной 115-вольтовой обмотки. выводы пусковой обмотки обычно имеют маркировку Т и Т. Если двигатель должен работать от 115 вольт, обе секции рабочей обмотки включена параллельно пусковой обмотке (6).

Для работы на 230 вольт перемычки подключения меняются в терминале коробки так, чтобы две 115-вольтовые секции рабочей обмотки были соединены последовательно через линию 230 вольт ( 7). Обратите внимание, что 115 вольт пусковая обмотка включена параллельно одной секции рабочей обмотка. Падение напряжения на этом участке рабочей обмотки равно 115 вольт, и напряжение на пусковой обмотке тоже 115 вольт.


ил. 6 Двойной двигатель, подключенный на 115 вольт.


ил. 7 Двойной двигатель, подключенный к сети 230 вольт.


ил. 8 Устройство обмотки для двигателя двойного напряжения с двумя пусковая и две рабочие обмотки

Некоторые двухфазные двухфазные двигатели имеют пусковую обмотку с двумя секций, а также бегущую обмотку с двумя секциями. Рабочая обмотка секции имеют маркировку T1 и T2 для одной секции и T3 и T4 для другой раздел. Одна секция пусковой обмотки имеет маркировку Т5 и Т6, а вторая вторая секция пусковой обмотки имеет маркировку Т7 и Т8.

Национальная ассоциация производителей электрооборудования (NEMA) имеет цветовую маркировку. терминал ведет. Если используются цвета, они должны быть закодированы следующим образом: Т1 — синий; Т2 — белый; Т3 — оранжевый; Т4 — желтый; Т5 — черный; и Т6— красный.

рис. 7 показано расположение обмотки для двигателя с двойным напряжением с две пусковые обмотки и две рабочие обмотки. Правильные соединения для работы 115 В и для работы 230 В приведены в таблице проиллюстрировано на 8.

Регулировка скорости асинхронного двигателя с расщепленной фазой очень хорошая. Это имеет скоростные характеристики от холостого хода до полной нагрузки, аналогичные трехфазного асинхронного двигателя с короткозамкнутым ротором. Процент проскальзывает на большинстве дробная мощность двигателей с расщепленной фазой составляет от 4 до 6 процентов.

Пусковой момент двигателя с расщепленной фазой сравнительно низкий. низкое сопротивление и высокое индуктивное сопротивление в цепи рабочей обмотки, а также высокое сопротивление и низкое индуктивное сопротивление в пусковой обмотке цепи приводят к тому, что два значения тока оказываются значительно меньше 90 электрический градусов друг от друга. Токи пусковой и рабочей обмоток во многих двигатели с расщепленной фазой только на 30 электрических градусов не совпадают по фазе с каждым другой. В результате поле, создаваемое этими токами, не развивается сильный пусковой момент.

КОНДЕНСАТОР СТАРТОВЫЙ, ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

Конструкция двигателя с конденсаторным пуском почти такая же, как у двухфазного асинхронного двигателя. Однако для двигателя с конденсаторным пуском последовательно с пусковыми обмотками включен конденсатор. конденсатор обычно монтируется в металлическом кожухе сверху двигателя. конденсатор может быть установлен в любом удобном внешнем положении на раме двигателя и, в некоторых случаях может быть установлен внутри корпуса двигателя. Конденсатор обеспечивает более высокий пусковой момент, чем у стандартного двухфазного двигателя. мотор. Кроме того, конденсатор ограничивает пусковой бросок тока до меньшего значения, чем у стандартного двигателя с расщепленной фазой.

Асинхронный двигатель с конденсаторным пуском используется на холодильных установках, компрессорах, жидкотопливных горелок, так и для мелкого машинного оборудования, а также для приложений которые требуют сильного пускового момента.


ил. 9 Подключение двух рабочих обмоток и одной пусковой обмотки схема подключения.

Принцип действия

Когда конденсаторный пусковой двигатель подключен к более низкому напряжению и запущен, рабочая и пусковая обмотки соединены параллельно напряжение сети, так как центробежный переключатель замкнут. пусковая обмотка, однако он включен последовательно с конденсатором. Когда мотор достигает при значении 75 процентов от его номинальной скорости центробежный выключатель размыкается и отключает пусковую обмотку и конденсатор от сети. Затем двигатель работает как однофазный асинхронный двигатель, используя только рабочий обмотка. Конденсатор используется для улучшения пускового момента и делает не улучшить коэффициент мощности двигателя.

Для создания необходимого пускового момента вращающееся магнитное поле должно создаваться обмотками статора. Пусковой ток обмотки приведет рабочий ток обмотки на 90 электрических градусов, если конденсатор, имеющий правильная емкость подключается последовательно с пусковой обмоткой. В результате магнитное поле, развиваемое обмотками статора, почти идентичен двухфазному асинхронному двигателю. Пусковой крутящий момент для двигателя с конденсаторным пуском, таким образом, намного лучше, чем у стандартного двухфазный двигатель.

Неисправные конденсаторы – частая причина неисправности конденсатора запуск, асинхронные двигатели. Некоторые неисправности конденсатора, которые могут произойти:

• возможно короткое замыкание конденсатора, о чем свидетельствует более низкая пусковая крутящий момент.

• конденсатор может быть «разомкнут», в этом случае цепи пусковой обмотки будет разомкнут, что приведет к невозможности запуска двигателя.

• конденсатор может замкнуться накоротко и вызвать срабатывание предохранителя ответвление цепи электродвигателя на перегорание. Если номиналы предохранителей достаточно высоки и не прервать подачу питания к двигателю достаточно быстро, пусковой обмотка может сгореть.

• Пусковые конденсаторы могут замыкаться, если двигатель включается и выключается много раз за короткий промежуток времени. Во избежание выхода из строя конденсатора многие производители двигателей рекомендуют запускать двигатель с конденсаторным пуском. не более 20 раз в час. Поэтому этот тип двигателя используется только в тех приложениях, где относительно мало пусков за короткое время временной период.


ил. 10 Соединения для конденсаторного пуска асинхронного двигателя

Скоростные характеристики двигателя с конденсаторным пуском очень хорошие. Возрастание в процентах проскальзывание от холостого хода до полной нагрузки составляет от 4 процентов до 6 процентов. Тогда скоростные характеристики такие же, как у стандартного двухфазный двигатель.

Выводы цепи пусковой обмотки перепутаны местами на реверс направление вращения конденсаторного пускового двигателя. В результате направление вращения магнитного поля, создаваемого обмотками статора реверсирует сердечник статора, и вращение ротора реверсируется. (См. рис. 9для реверсивного подключения проводов.)

ил. 10 – схема соединений цепи конденсаторного пуска. двигатель до того, как провода пусковой обмотки поменялись местами, чтобы направление вращения ротора. Диаграмма на рисунке 11 показывает соединения цепей двигателя после перепутывания выводов пусковой обмотки изменить направление вращения.

Второй способ изменения направления вращения пускового конденсатора двигатель, чтобы поменять местами два рабочих провода обмотки. Однако этот метод используется редко.

Пуск конденсатора, асинхронные двигатели часто имеют двойное номинальное напряжение 115 вольт и 230 вольт. Соединения для двигателя с конденсаторным пуском такие же, как и для асинхронных двигателей с расщепленной фазой.


ил. 11 Соединения для реверсивного конденсаторного пуска, индукционные запустить мотор.

КОНДЕНСАТОР ЗАПУСКА, КОНДЕНСАТОР РАБОТЫ ДВИГАТЕЛЯ

Пуск конденсатора, двигатель с конденсатором аналогичен пуску конденсатора, асинхронный двигатель, за исключением того, что пусковая обмотка и конденсатор постоянно включен в цепь. У этого мотора очень хороший пуск крутящий момент. Коэффициент мощности при номинальной нагрузке составляет почти 100 процентов или единицу. из-за того, что в двигателе всегда используется конденсатор.

Существует несколько различных конструкций для этого типа двигателя. Один тип конденсаторный пуск, конденсаторный двигатель имеет две обмотки статора, которые на расстоянии 90 электрических градусов друг от друга. Основная или рабочая обмотка подключена непосредственно через номинальное линейное напряжение. Конденсатор включен последовательно с пусковой обмоткой и эта комбинация последовательностей также связана по номинальному линейному напряжению. Центробежный переключатель не используется, потому что пусковая обмотка находится под напряжением в течение всего периода работы двигатель.

илл. 12 показаны внутренние соединения для запуска конденсатора, конденсатор запуска двигателя с использованием одного значения емкости.


ил. 12 Соединения для конденсаторного пуска, конденсаторного двигателя.

Чтобы изменить направление вращения этого двигателя, провода пускового обмотки надо поменять местами. Этот тип запуска конденсатора, запуск конденсатора двигатель тихий в работе и используется на масляных горелках, вентиляторах и небольших деревообрабатывающие и металлообрабатывающие станки.

Второй тип пуска конденсатора, двигатель с конденсатором имеет два конденсатора. Рис. 13 представляет собой схему внутренних соединений двигателя. В в момент запуска двигателя два конденсатора включены параллельно. Когда двигатель достигает 75 процентов от номинальной скорости, центробежный переключатель отключает конденсатор большей емкости. Затем двигатель работает с меньший конденсатор подключен только последовательно с пусковой обмоткой.


бол. 13 Соединения для конденсаторного пуска, конденсаторный двигатель: МАЛЕНЬКИЙ КОНДЕНСАТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАПУСКА И РАБОТЫ; КОНДЕНСАТОР БОЛЬШОГО РАЗМЕРА ДЛЯ ЗАПУСК.

Этот тип двигателя имеет очень хороший пусковой момент, хорошую регулировку скорости и коэффициент мощности почти 100 процентов при номинальной нагрузке. Заявки на К этому типу двигателей относятся топки печей, холодильные агрегаты и компрессоры.

Третий тип конденсаторного пуска, конденсаторный двигатель имеет автотрансформатор с одним конденсатором. Этот двигатель имеет высокий пусковой момент и высокий рабочий фактор силы. Рис. 14 представляет собой схему внутренних соединений для этот мотор. Когда двигатель запускается, центробежный переключатель подключается обмотку 2 в точку А на ответвленном автотрансформаторе. Так как конденсатор подключенный через максимальные витки трансформатора, он получает максимальное напряжение вывод при запуске. Таким образом, конденсатор подключен через значение приблизительно 500 вольт. В результате возникает большое значение опережающего тока в обмотке. 2, и создается сильный пусковой момент.

Когда двигатель достигает примерно 75% номинальной скорости, центробежный выключатель отключает пусковую обмотку от точки А и снова включает эту обмотку к точке B на автотрансформаторе. Подается меньшее напряжение к конденсатору, но двигатель работает с обеими обмотками под напряжением. Таким образом, конденсатор поддерживает коэффициент мощности около единицы при номинальной нагрузке.

Пусковой момент этого двигателя очень хороший, а регулировка скорости является удовлетворительным. Приложения, требующие этих характеристик, включают большие холодильники и компрессоры.


ил. 14 Соединения для конденсаторного пуска, конденсаторного двигателя с автотрансформатором

НАЦИОНАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ НОРМЫ

Раздел 430-32(b) (1) Национального электротехнического кодекса гласит, что любой двигатель мощностью в одну лошадиную силу или меньше, который запускается вручную и находится в пределах поле зрения из места старта, считается защищенным от перегрузка устройством перегрузки по току, защищающим проводники ответвления схема. Это ответвленное устройство максимального тока не должно быть больше, чем указано в статье 430, часть D (цепь двигателя, короткое замыкание и замыкание на землю). Защита). Исключением является то, что любой такой двигатель можно использовать при напряжении 120 вольт. или менее на защищенной ответвленной цепи не более 20 ампер.

Расстояние более 50 футов считается вне поля зрения местонахождение стартера. Раздел 430-32(c) распространяется на двигатели мощностью от одной лошадиной силы до меньше, автоматически запускаются, которые находятся вне поля зрения с места расположения стартера или стационарно установлен.

Раздел 430-32(c) (1) гласит, что любой двигатель мощностью в одну лошадиную силу или менее который запускается автоматически, должен иметь отдельное устройство максимального тока который реагирует на ток двигателя. Эта единица перегрузки должна быть установлена отключаться при токе не более 125 процентов от номинального тока полной нагрузки двигатель для двигателей с маркировкой превышения температуры не более 40 градусов Цельсия или с эксплуатационным коэффициентом не менее 1,15, (1,15 и выше) и не более 115 процентов для всех остальных типов двигателей.

ОБЗОР

Однофазный асинхронный двигатель является одним из наиболее часто используемых бытовых и легких коммерческих двигателей. Каждое приложение будет диктовать правильный двигатель стиль для использования. Во всех двигателях используется концепция одной фазы или одной фазы. синусоида и смещение эффектов токов через катушки к создать движущееся магнитное поле. Расщепленная фаза и конденсаторный пуск двигатель использовать пусковой переключатель для отключения пусковых обмоток от линию, как только двигатель наберет рабочую скорость. Двигатели с двумя конденсаторами используют несколько конденсаторов или варианты конденсаторов с двумя номиналами для создания пусковой и рабочей цепей. Все те же правила NEC, которые применяются к трехфазным двигателей по-прежнему относятся к однофазным двигателям. Есть много исключений, которые применимы только к двигателям малой мощности.

ВИКТОРИНА

1. Перечислите основные части асинхронного двигателя с расщепленной фазой.

2. Что происходит, если контакты центробежного выключателя не замыкаются при мотор останавливается?

3. Объясните, как изменяется направление вращения асинхронного двигателя с расщепленной фазой. перевернуто.

4. Асинхронный двигатель с расщепленной фазой рассчитан на двойное напряжение 115/230 В. вольт. Двигатель имеет две рабочие обмотки, каждая из которых рассчитана на 115 В. вольт, и одна пусковая обмотка на 115 вольт. Нарисуйте схему этого двухфазного асинхронного двигателя, подключенного для работы на 230 вольт.

5. Нарисуйте принципиальную схему подключения двухфазного асинхронного двигателя. в вопросе 4 подключен для работы на 115 вольт.

6. Асинхронный двигатель с расщепленной фазой рассчитан на двойное напряжение 115/230 В. вольт. Двигатель имеет две рабочие обмотки, каждая из которых рассчитана на 115 В. вольт. Кроме того, имеются две пусковые обмотки и каждая из этих обмоток рассчитан на 115 вольт. Нарисуйте принципиальную схему подключения этой расщепленной фазы асинхронный двигатель подключен для работы на 230 вольт.

7. В чем основная разница между асинхронным двигателем с расщепленной фазой и асинхронным двигателем с конденсаторным пуском?

8. Если центробежный выключатель не размыкается при разгоне двигателя с расщепленной фазой до его номинальной скорости, что произойдет с пусковой обмоткой?

9. Какое ограничение у конденсаторного пуска асинхронного двигателя?

10. Вставьте правильное слово или фразу, чтобы заполнить каждое из следующих заявления.

а. Двигатель мощностью в одну лошадиную силу или меньше, который запускается вручную и который находится в пределах видимости от места запуска, считается защищенным ______

б. Двигатель мощностью в одну лошадиную силу или менее, запускаемый вручную, считается в пределах видимости от места старта, если расстояние не превышает _________

в.