Токовые клещи мультиметры: Сравнение токоизмерительных клещей и цифрового мультиметра

Содержание

Сравнение токоизмерительных клещей и цифрового мультиметра

Цифровой мультиметр — это прибор для измерений преимущественно напряжения с некоторыми функциями измерения силы тока. Токоизмерительные клещи — это в основном прибор для измерений силы тока с некоторыми функциями измерения напряжения. Это совершенно разные приборы, каждый из которых имеет свои преимущества.

Цифровой мультиметр (DMM), обеспечивающий высокое разрешение и возможность измерений тысячных долей параметров (в милливольтах, миллиамперах и миллиомах) позволяет работать с электронными устройствами. Он также широко применяется для электрических измерений, хотя ток обычно ограничивается значением до 20 А. Однако цифровой мультиметр может измерять и более высокие токи, если к нему подключены токовые клещи-приставка.

Токоизмерительные клещи обычно измеряют параметры с точностью до десятых или сотых, а не тысячных, как это делает цифровой мультиметр. Но этого достаточно для электротехнических измерений.

Эволюция измерений

Ранее для измерений силы тока электрики предпочитали пользоваться измерительными щупами, а не токовыми клещами. Токовые клещи позволяют измерять силу тока без разрыва цепи и считывать с экрана показания тока.

Кроме того, новое поколение токоизмерительных клещей было оснащено гибкими токоизмерительными пробниками, которые компания Fluke назвала iFlex®. Эти пробники, созданные на основе пояса Роговского, можно продвигать между близко расположенными проводниками, а также устанавливать на провода с большим диаметром. Указанные приборы могут быть полезными и эффективными в ряде следующих ситуаций:

  • Одновременные измерения аналогового сигнала скорости конвейера и соответствующего тока двигателя, чтобы откалибровать систему для требуемой последовательности технологического процесса.
  • Мониторинг выхода соленоида при одновременном мониторинге входа от ПЛК, чтобы можно было проверить работоспособность соленоида.
  • Одновременные измерения цифровых напряжений и аналоговых сигналов тока на приводе двигателя для диагностики и устранения флуктуаций скорости линии.
  • Одновременный мониторинг напряжения и тока линии питания для устранения ложных срабатываний.

Одновременные измерения напряжения и тока входят в состав работ по обнаружению и устранению неполадок. Однако одним мультиметром выполнять одновременные измерения невозможно — для этого требуется приобретение дополнительных приборов, используемых для измерений и анализа качества электроэнергии.

Для эффективного поиска и устранения неполадок часто нужны два мультиметра — один для измерений тока и второй для измерений напряжения. Для электриков самым универсальным диагностическим инструментом из имеющихся являются токоизмерительные клещи. Работники, занимающиеся диагностикой и ремонтом промышленного оборудования, предпочитают пользоваться двумя отдельными приборами — токовыми клещами и цифровым мультиметром.

Экономически выгодным подходом для многих технических специалистов является покупка одного высококачественного прибора, предназначенного для измерений преимущественно напряжения (цифровой мультиметр), и второго прибора, который в основном используется для измерений тока (токоизмерительные клещи).

Выбор комбинации измерительных приборов зависит от оборудования, с которым вы работаете, и вида выполняемых измерений. Например, при работе с токоизмерительными клещами может понадобиться фильтр нижних частот, устраняющий электронные помехи, которые могут искажать показания.

Ниже приводится несколько рекомендаций по выбору приборов, которые могут соответствовать вашим потребностям:

  • Базовый цифровой мультиметр: для работ, требующих только базовых измерений напряжения и целостности цепи.
  • Высококлассный цифровой мультиметр: для работ, связанных с измерениями и анализом качества электроэнергии. Вам понадобятся высокое разрешение и расширенные функции, которых нет в токоизмерительных клещах.
  • Базовые токоизмерительные клещи: для работ, связанных с базовыми измерениями силы тока, например, если требуется проверить одинаковый ли ток на всех трех фазах линии питания.
  • Токоизмерительные клещи-регистратор: для работ, связанных с устранением нерегулярных срабатываний выключателя.
  • Цифровой мультиметр или токоизмерительные клещи со съемным экраном (который можно разместить на расстоянии 9 м от корпуса клещей): если вы хотите удаленно считывать данные, чтобы повысить уровень безопасности и не пользоваться помощью напарника.

Токоизмерительные клещи с расширенными функциями: если требуются точные измерения пускового тока двигателя. Кроме того, токоизмерительные клещи с расширенной обработкой сигналов могут быть полезны при измерениях выходных сигналов частотно-регулируемого привода.

Пробник, мультиметр и токовые клещи — что это и зачем нужны эти инструменты | Другие инструменты | Блог

Электричество и электроприборы окружают нас со всех сторон. Так что приборы, определяющие те или иные параметры электрической цепи, сегодня нужны каждому: не будешь же вызывать электрика, чтобы проверить батарейку или лампочку. Какой из приборов лучше подойдет для выполнения самых распространенных домашних задач?

Пробник — он же индикаторная отвертка

Этот инструмент, несмотря на простоту, имеет множество возможностей и способен решить большинство бытовых задач — надо только подобрать правильную модель и правильно ей пользоваться.

Пробники бывают нескольких видов, заметно отличающихся по функциональности:

1. Индикаторные отвертки без питания с неоновой лампочкой или ЖК-индикатором. Это самый простой и недорогой вид индикаторных отверток, но функционал их невелик. 

С помощью такого пробника можно только определить фазный провод. Для этого следует коснуться жалом проверяемого проводника или клеммы, прижав палец к контакту на ручке. 

Если на проводнике есть 220 В, лампочка загорится. Но больше ничего пробником без питания сделать не получится — ни найти нулевой провод, ни проверить его целостность, ни даже определить наличие напряжения ниже 60-70 В.

2. Индикаторные отвертки со своим питанием от батареек и схемой на полевом транзисторе. Внешне они могут быть очень похожи на рассмотренные ранее, но отличить их довольно просто: во-первых, у моделей с прозрачным корпусом внутри видны батарейки-таблетки. 

Во-вторых, если прикоснуться одновременно к жалу и к контакту на корпусе, индикатор загорится.  

В-третьих, некоторые модели снабжены выключателем, что также говорит о наличии автономного питания.

Это уже более функциональный инструмент, с помощью которого можно выполнить множество задач:

  • Определение фазы — для этого нужно коснуться проверяемой клеммы жалом, не притрагиваясь к контакту на корпусе. Если напряжение на клемме есть, светодиод загорится.
  • Проверка заземления. Чтобы проверить, заземлен ли электроприбор, прикоснитесь жалом пробника к металлу его корпуса (нужно найти неокрашенный участок или процарапать краску до металла в незаметном месте). Прибор при этом должен быть включен в сеть. Если заземления нет, загорится светодиод.
  • Определение нулевого провода или заземляющего проводника. Прикоснитесь жалом к тестируемому проводу, по отсутствию индикации убедитесь, что провод не фазный. Теперь, прижав пальцем контакт на корпусе пробника, прикоснитесь жалом к тестируемому проводу. Если это нулевой провод или «земля», светодиод загорится. Если светодиод не загорелся — значит, провод никуда не подключен или в обрыве.

  • Определение обрыва провода. Чтобы проверить целостность провода, оголите оба его конца, возьмите один конец в руку, а к другому прикоснитесь жалом пробника, прижав палец к контакту на корпусе. Если провод целый, загорится светодиод индикатора.

  • Проверка лампочек, предохранителей, ТЭНов и т. п. Чтобы проверить, целый ли предохранитель, прикоснитесь пальцами к одной его клемме, а к другой — жалом пробника. Второй рукой при этом надо касаться контакта на корпусе пробника. Если предохранитель целый, загорится индикатор. Так же проверяются лампочки, ТЭНы и другие элементы со свободным протеканием электротока.

  • Бесконтактное определение фазы. Если прикоснуться пальцем к контакту на корпусе, пробник будет определять наличие напряжения в проводе уже на некотором расстоянии — достаточно поднести жало на 1-2 см к проводнику.

  • Поиск проводов в стене. Предыдущий способ позволяет искать провода под напряжением под слоем штукатурки — только не очень толстым, не более 2 см. Для этого следует, прижав палец к контакту на корпусе, вести жалом по стене. В месте, где под стеной проходит провод, индикатор будет загораться. Иногда эффективней бывает искать провод другим способом — держать пробник за жало и вести его вдоль стены вплотную к контакту на корпусе. Площадь контакта больше, чем площадь жала, и в таком режиме чувствительность пробника может быть выше.

3. Бесконтактные пробники с высокой чувствительностью, не требующие контакта с проводом для определения фазы или заземления. 

Они отличаются максимальной безопасностью, так как для работы с ними не требуется доступ к оголенным проводам. Также с помощью бесконтактных пробников обычно можно искать скрытую проводку, причем не обязательно под напряжением — они могут работать как детектор металлов.

В то же время, при работе с электроаппаратурой или проверке многожильных кабелей использовать такие пробники бывает неудобно, так как сложно отделить сигнал нужного провода от помех, генерируемых прочими близко расположенными проводниками.

Мультиметр

Если пробник позволяет определить только качественные показатели (есть напряжение/нет напряжения, есть контакт/нет контакта), то мультиметром можно узнать численные значения этих характеристик. Поэтому мультиметры часто используются электронщиками, но и в домашнем хозяйстве он также может пригодится.

Мультиметром можно замерить точное значение напряжения в розетке. Для этого нужно выставить на нем соответствующий режим измерения (переменное напряжение — ACV, предел не менее 300 V), правильно подключить щупы и вставить оба щупа в розетку. Обычно один щуп подключается в общий разъем, второй — в разъем переменного напряжения.

По ГОСТу напряжение в розетке должно быть в пределах 210-250 В. Если напряжение в вашей розетке сильно выходит за указанные пределы, это повод звонить в электроснабжающую организацию. Бытовым приборам вредно как пониженное, так и повышенное напряжение.

Не пытайтесь проверить мультиметром силу тока в розетке (в режиме А) — в лучшем случае сгорит предохранитель мультиметра, в худшем — произойдет оплавление и воспламенение проводки, а прибор выйдет из строя.

Мультиметр может помочь при определении исправности блока питания ноутбука или другого гаджета с круглым разъемом питания. Для этого надо посмотреть на корпусе блока питания выходное напряжение и установить на мультиметре соответствующий предел измерения постоянного напряжения (DCV). 20 В обычно достаточно, но, если блок питания выдает, к примеру, 36 В, предел должен быть выше этого значения. После этого следует включить блок питания в сеть и прикоснуться щупами к контактам разъема. Обычно один из контактов находится внутри цилиндра разъема в виде штырька или металлической трубочки, а второй — снаружи. 

За полярностью можно не следить, если перепутать «минус» с «плюсом», ничего страшного не произойдет, просто значения на экране выведутся со знаком «–». Если после этого на экране остается 0, значение ниже указанного на корпусе БП или же оно постоянно меняется — блок питания неисправен и требует замены.

В режиме прозвонки мультиметром удобно определять целостность проводов и искать концы одного провода в многожильных кабелях. Для этого надо выставить режим прозвонки и прикоснуться щупами к разным концам провода. Удобно то, что в большинстве мультиметров удачная прозвонка сопровождается звуковым сигналом, то есть не нужно смотреть на прибор в процессе работы.

Мультиметром можно проверить батарейки. Проще и безопаснее всего проверить напряжение в режиме измерения постоянного напряжения с пределом 2-20 В (в зависимости от номинального напряжения батарейки). Для полностью заряженной «пальчиковой» или «мизинчиковой» батарейки напряжение должно быть в пределах 1,4-1,6 В. Слегка разрядившиеся элементы могут дать напряжение 1,2-1,4 В, а полностью разряженные — 1,1 В и менее. 

Однако этот способ не обладает высокой достоверностью — вполне могут попасться батарейки, дающие 1,4 В, при этом практически не сохранившие заряда. Более надежный способ — измерение тока короткого замыкания. Надо переключить мультиметр в режим измерения постоянного тока на максимальном пределе (10-20 А, возможно, потребуется переставить щуп в другое гнездо на мультиметре) и кратковременно коснуться щупами полюсов батарейки. Касаться нужно до достижения максимального значения на табло, но в любом случае, не дольше 1,5-2 сек. Проверять таким способом рекомендуется только батарейки, аккумуляторные элементы могут иметь высокий ток КЗ, что приведет к выгоранию предохранителя в мультиметре и повреждению самого аккумулятора. 

  • Ток КЗ в 3-6 А показывает, что батарейка заряжена и может использоваться в гаджетах с высоким энергопотреблением: фонарики, цифровые фотоаппараты, игрушки с электродвигателями и т. п.
  • Батарейка с током КЗ в 2-3 А еще может использоваться в электроприборах с низким энергопотреблением: пульты ДУ и радиоуправления, электронные часы, термометры и т. п.
  • Ток КЗ в 1А и менее сигнализирует о разряде батарейки — в пульте ДУ она, может, еще и поработает, но недолго. Во что-либо более энергопотребляющее такие батарейки ставить уже смысла нет.

Также мультиметром можно более точно определить исправность ТЭНов бойлеров, чайников, стиральных машин и другой техники, чем при использовании пробника. Сначала нужно отключить питание электроприбора и снять его крышку, чтобы получить доступ к ТЭНу. Проверять целостность ТЭНа через вилку провода питания не стоит — в обесточенном состоянии цепь питания может быть разорвана электроникой прибора, и никакой проверки не выйдет. Далее следует отсоединить провода, подходящие к клеммам ТЭНа, чтобы другие элементы прибора не вносили искажений в результаты измерения. Далее следует проверить:

  • Сопротивление между клеммами ТЭНа в режиме замера сопротивления с пределом 200 Ом. В зависимости от мощности оно может составлять от 20 до 60 Ом, но в любом случае меньше 200. 
    Если сопротивление близко к 0 (0-2 Ом), в ТЭНе короткое замыкание, пользоваться им нельзя. Высокое же сопротивление говорит об обрыве ТЭНа.

  • Сопротивление между корпусом (землей) и клеммами ТЭНа в режиме измерения сопротивления с максимальным пределом. Прибор должен показать максимум или ошибку измерения.   
    Любое положительное значение ниже верхнего предела, в принципе, говорит о пробое ТЭНа на корпус и небезопасности его использования.
    Вообще, сопротивление изоляции имеет вполне конечные значения, но бытовые мультиметры его измерять не умеют.

По такому же принципу проверяются обмотки электродвигателей. Разве что разброс сопротивлений исправных обмоток выше — у маломощных электродвигателей оно может составлять единицы Ом, у двигателей помощнее — десятки и сотни.

Также мультиметром можно измерять характеристики различных электронных компонентов — конденсаторов, диодов, транзисторов и т. п., но это тема отдельной статьи.

Есть и сильные стороны – у экрана приятная голубоватая подсветка. А при превышении определенных значений тока и напряжения она становится янтарной.

К сожалению, голубая подсветка автоматически отключается через несколько секунд работы. Сам прибор тоже автоматически отключается через несколько минут простоя. Но его автоотключение можно отключить, если включать с нажатой кнопкой «Func». Убедиться, что функция автоотключения отключена можно по исчезновению пиктограммы с часиками в углу экрана.

Вскрытие. Корпус собран на двух саморезах. Первый доступен из батарейного отсека, второй прячется под наклейкой с серийным номером. Контакты батареек подключены к плате через пружинки. Это упрощает разборку корпуса – половинка корпуса не болтается на проводах. По периметру корпуса выполнен двойной паз, что затрудняет попадание пыли и влаги внутрь.


Пайка не без огрехов. Кое-где висят сопли припоя. Некоторые провода не продеты в отверстия платы, а прихвачены каплей припоя к поверхности.

Контроллер прибора в капле компаунда. С одной стороны, такое решение считается неремонтопригодным. Но с другой – экономический эффект ремонта прибора этого ценового диапазона неочевиден.


Обращает на себя внимание странное расположение термисторов на входе. Длинные, причудливо изогнутые ноги полупроводниковых приборов находятся в опасной близости друг от друга. При этом, на них приходится полное напряжение, до 600 вольт! Судя по шелкографии, проектировщики задумали установить термисторы на разных сторонах платы (на фото снизу место PTC2).

Но сборщики решили иначе.

Флюс кое-где не смыт – обратите внимание на пайку проводов внизу кадра на последней фотографии.

Так что впечатления от внутренностей прибора неоднозначные. Задумано хорошо. Реализовано на троечку. Но относительно легко может быть доведено до ума при помощи паяльника и спирта.

Измерение постоянного напряжения. Тут у нас одна шкала с пределом в 600 вольт и разрешением в один знак после запятой. А заявленная погрешность ±0,5% от показаний плюс 5 единиц младшего разряда. Для десяти вольт это и будет 0,5 В. Но мы для тестов задействуем источник опорного напряжения на микросхеме AD584LH с точностью в 100 раз выше – 0,005 В.

Тестируем 2,5 В.


Немного занижает, но в пределах заявленной погрешности измерений.

5 В:


Аналогично.

7,5 В:


Похоже, небольшая ошибка постоянна.

10.0 В:


Для практического применения такая точность вполне достаточна. Вряд ли с помощью клещей на 200 ампер кто-то будет ремонтировать прецизионную аппаратуру.

Измерение сопротивления. Предусмотрено два диапазона: до 2 КОм и до 20 КОм. Благодаря тому, что прибор не имеет автоматического определения диапазона, измерения проходят максимально быстро.

Если внимательно рассмотреть запись, то между касаниями контактов и появлением показаний на экране умещается 30 кадров. При частоте кадров 60 в секунду получается 0,5 сек. Точность показаний соответствует заявленной.

Прозвонка. Здесь скорость особенно важна. Аналогично, смотрим покадрово:

Странно, но задержка включения зуммера зависит от паузы между измерениями. Чем она меньше – тем меньше и задержка.

Если «на холодную», то через 0,3 сек экран показывает значение сопротивления, и только через секунду зажигается красный светодиод и включается зуммер. Если следующее измерение делать сразу же, то и показания, и зуммер, и светодиод включаются одновременно с задержкой 0,3 сек. Все это немного сбивает с толку, конечно.

ICartool IC-M206B

Функционал этого прибора заметно превосходит младшую модель. Проще сказать, чем она отличается от старшей модели линейки. Только измерением переменного тока. Все остальное как у флагмана. А именно, прибор может измерять:

  • Переменный ток до 600 А.

  • Частоту до 10 МГц.

  • Коэффициент заполнения ШИМ.

  • Температуру до 1000 °C (так заявлено).

  • Напряжение на pn-переходе диодов.

  • Емкость конденсаторов.

Плюс ко всему, имеются дополнительные функции низкочастотного фильтра, низкоомного вольтметра и бесконтактного определения напряжения, которые мы, конечно же, тоже проверим. Да, и еще фонарик!

Коробка аналогична младшей модели, но размер немного крупнее.

В коробке чехол. Да, это уже совсем другой ценовой уровень, можно сказать – комплектация «люкс». Чехол было бы удобно переносить за ремешок, но он немного коротковат. Инструкция в кармашке, щупы, термопара, батарейки и сам прибор.

Щупы тут посерьезнее, чем у IC‑200A.


Маркировка третьей категории, допуск до 600 вольт. На кончиках «носочки» для измерений в местах, где можно случайно коротнуть.

Измеряем сопротивление:


Ток 2 А, падение напряжения на паре щупов 0,271 В. Сопротивление пары 0,136 Ом. В пять раз меньше, чем у IC‑200A. Такие щупы уже можно использовать для измерения токов.

Перейдем непосредственно к прибору. Он выполнен в том же стиле, что и IC‑200A, но немного крупнее. Пластик красный и черный. Белые надписи на черном пластике читаются лучше. Программное колесо с рукояткой, так что вращать его можно как рукой, которая держит прибор, так и другой рукой. По этой же рукоятке удобно определять выбранный режим измерений. Было бы совсем хорошо, если бы на рукоятке была контрастная стрелка, но и так уже лучше, чем на IC‑200A.


Клавиша нажимается достаточно туго, но хорошее смыкание необходимо для точности измерений, так что приходится мириться с этим. Раскрытие челюстей такое, что в зев войдет любой проводник разумных размеров. На одной челюсти есть «клювик», которым удобно раздвигать провода и выделять нужный провод среди прочих. Прямо внутрь челюстей светит фонарь. Хват достаточно удобный. И клавиша, и переключатель режимов оказываются прямо под нужными пальцами.


А вот экран тоже, как и в IC‑200A, имеет свои «мертвые углы».

И подсветка, разрази ее гром, снова отключается сама. Это, пожалуй, два самых серьезных недостатка, которые бросаются в глаза еще до начала тестирования прибора.

Постоянное напряжение измеряется с автоматическим определением диапазона. Уровни ИОНа определяются так.

2,5 В:


5,0 В:


7,5 В:


10 В:

Как можно убедиться, все уровни измерены с погрешностью в пределах 0,1 вольта, что более чем достаточно для бытового прибора.

Прозвонка. Поведение в этом режиме немного странное. Вот видео:

При соединении щупов зуммер звучит практически сразу – задержка в пределах 1/60 секунды. Сигнал длится 0,5 секунды, к концу этого интервала экран показывает уже какое-то значение сопротивления. После наступает тишина, и в течение следующей секунды значение измеренного сопротивления снижается и приближается к реальному. Через 1,25 секунды тишины оно опускается ниже 30 Ом, тотчас экран подсвечивается янтарным цветом и возобновляется зуммер. Схема с такими паузами не очень удобна для восприятия, но, надо признать, информативная.

Измерение частоты работает только для сигнала с нулевым средним значением. Если у вас не такой, постоянную составляющую придется гасить развязывающим конденсатором.


До полутора мегагерц показания хорошо соответствуют реальным, дальше проверять не стал.

Коэффициент заполнения проверен на частотах 100 Гц и 1 КГц.


Везде прибор точно находил искомую величину, вплоть до 99%, что очень хорошо.

Емкость прибор измеряет в очень широком диапазоне: до 0,1 Ф. Маленькие значения измеряются достаточно быстро.


А вот над крупными электролитиками прибору приходится потрудиться:

Над этим экземпляром он задумался на 8,2 секунды.

Сопротивление прибор измеряет куда быстрее емкости.

Этот мощный резистор покорился менее чем за 2,5 секунды.

Причем время обратно пропорционально номиналу сопротивления.

Ура! Физика работает! Первый светодиод, с самым низким падением напряжения – инфракрасный. Мы вообще не видим его свет. А последний – ультрафиолетовый. У него самая высокая энергия волны и самое большое падение напряжения.

Фонарь. Здесь все просто. Долгое нажатие кнопки включения света – он включается. Второе долгое нажатие – выключается. Либо можно выключить весь прибор – включение фонаря не запоминается. Светит фонарь прямо между челюстями клещей, чуть выше середины по высоте. Свет белый, со слегка синим оттенком. Не очень яркий, но достаточный, чтобы было видно, куда лезешь. В жизни подсветка выглядит примерно так:


Измерение температуры производится термопарой K типа, которая поставляется в комплекте. Из имеющихся у меня термопар эта имеет самый мягкий провод. С ней приятно работать, нет «пружинистости», с которой приходилось бороться, измеряя температуру другими приборами. Показания температуры правдоподобны на точках 36 и 220 градусов, остальной диапазон не измерял.


Бесконтактное определение напряжения работает. Нельзя сказать, что это такой уж точный метод – даже в описании оговаривается, что его показаний недостаточно, чтобы спокойно хвататься за оголенные провода. Но он поможет быстро определить, в каких розетках есть электричество, а в каких нет, или имеется ли под напольным покрытием теплый пол. Даст приблизительное представление о том, где в стене проложен провод.

Из видео можно понять, что показания приборов более-менее соответствуют друг другу. Различается частота обновления показаний. У IC‑200A она порядка 1 в секунду. А у IC‑206B и IC‑206D порядка 3 раз в секунду.


Можно заметить, что у IC‑206В присутствует ненулевое значение тока при реальном отсутствии тока нагрузки. Это может быть вызвано измерением паразитных токов высокой частоты. Чтобы отфильтровать их, в приборе есть специальный режим.

LPF (Low Pass Filter). Этот фильтр срезает высокие гармоники и показания становятся более правдоподобными. Включаем:


Ну вот, теперь все хорошо. Посмотрим полосу пропускания фильтра.

На 50 Гц приборы адекватно показывают среднеквадратичное значение напряжения:


На 1 КГц показания укладываются в заявленную погрешность.


Начиная а 2 КГц напряжение уже не может быть измерено с достаточной точностью.


На 5 КГц ошибка более чем вдвое. Далее проверять не имеет смысла.


Фильтр очевидно работает, и его амплитудно-частотная характеристика плавно ниспадает в интервале 1‑10 КГц.

Любопытно заметить, что включение фильтрации частот потребовалось лишь модели датчиком тока имени Фарадея. Клещи Ампера-Холла не требовали никаких фильтров, чтоб валидно распознать ноль.

Для второго измерения в качестве референсных приборов я установил клещи MT‑87 и Mustool MT866. Это приборы попроще старших моделей от ICartool. У них нет фильтра нижних частот, результат – ненулевые значения при отсутствии нагрузки.


Показания всех совпадают с точностью, достаточной для практического применения.

Для измерений больших токов был задействован трансформатор от точечной сварки. С кабелями на выходе он выдает ток до трехсот ампер. Попробуем подогреть гвоздь:

Как видно, гвоздь греется, а показания совпадают с точностью, достаточной для практического применения.

Переменное напряжение все приборы тоже превосходно измеряют.


Измерение постоянного тока наиболее интересно применительно к автомобилю. Аккумулятор легкового автомобиля способен выдать ток до 600 ампер. Обычно такой ток требуется лишь доли секунды, для запуска холодного мотора зимой. Но это те самые доли секунды, которые отделяют запуск от незапуска, поездку по делам от снятия аккумулятора для зарядки, движение в теплом автомобиле от размахивания проводами для прикуривания. Хотя бы пару раз в год, в сезонное обслуживание автомобиля, полезно протестировать аккумулятор на предмет, протянет он еще сезон или пора в утиль. В принципе, для этого можно использовать нагрузочную вилку. Она показывает проседание напряжения под нагрузкой. Но вот беда – нагрузка там абстрактная, так что мы измеряем ресурс аккумулятора «в попугаях». Лучшая тестовая нагрузка для любого аккумулятора – стартер той машины, где он установлен. Для эксперимента нам потребуется любой мультиметр с функцией определения минимального напряжения и токовые клещи с функцией определения максимального тока. В моем случае это ICartool IC‑M118A и ICartool IC‑206D соответственно.

Сначала измеряем ЭДС аккумулятора – напряжение при выключенных потребителях.


12,26 В.

Затем выбираем режим фиксирования минимальных значений напряжения и максимальных тока. В моем случае ток идет в клещах «задом наперед», так что будут отрицательные показания, а выбираю я минимальное значение. Пришло время запускать мотор.


По цепи стартера тек ток в 209,8 ампер. Напряжение на выводах аккумулятора при этом падало до 10,47 вольт.

(12,26-10,47)/209.8 = 0,0085 (Ом.)

8,5 мОм – таково внутреннее сопротивление батареи. Это много, норма 4-6.

Но наш метод не идеален. Мы не знаем частоту измерений в приборах, так что реальные значения внутреннего сопротивления могут быть как больше (если мы не поймали пик тока), так и меньше (если мы не поймали истинное минимальное напряжение). Но как грубая оценка состояния аккумулятора годится и такой метод.

Функция минимальных и максимальных значений для таких измерений совершенно необходима – глазом и даже видеокамерой скоротечные процессы не заметить. Хорошо, что при активации этой функции клещи запоминают и минимум, и максимум. После измерений нажатием кнопки можно переключать на экране зафиксированные значения сколько угодно раз. Это очень удобно.


Выводы

Все три прибора работают, все заявленные характеристики соответствуют реальным.

ICartool IC-200A подойдет тем, у кого есть мультиметр, но не хватает функции проверки потребления электроприборов. Достоинства – компактность и цена. К недостаткам можно отнести невысокое качество пайки.

ICartool IC-206В – прибор со сбалансированными характеристиками. Имея такой прибор дома, мультиметр уже и не обязателен. По большому счету, для того чтобы стать универсальным, ему не хватает только функции измерения тока. Но для этого случая существует другая модель.

ICartool IC-206D – универсальный прибор. Достоинства – измеряет все. Недостатки – странное поведение в измерениях скважности.

Достоинства всех трех приборов – хорошие корпуса. Достаточно точные измерения. Богатый функционал старших моделей.

Недостатки всех трех – не вполне удобный режим прозвонки и экран, который виден не со всех ракурсов.


Тема:  Токовые клещи

Токоизмерительные клещи | Инструмарт

Токоизмерительные клещи представляют собой электрические тестеры с широкими губками, которые могут зажимать электрический проводник. Первоначально разработанный как одноцелевой инструмент для измерения переменного тока, Токоизмерительные клещи теперь имеют входы для подключения измерительных проводов и других пробников, поддерживающих широкий диапазон электрических измерений. Незаменимы в качестве испытательного инструмента, губки токоизмерительных клещей облегчают работу в ограниченном пространстве и позволяют измерять ток на проводниках под напряжением без разрыва цепи.

Хотя токоизмерительные клещи тесно связаны с мультиметрами, они представляют собой не просто мультиметры с индуктивными клещами, заменяющими измерительные провода. Как правило, мультиметры можно рассматривать как устройства для измерения напряжения. приборы с некоторой способностью измерения тока, в то время как токоизмерительные клещи – это приборы для измерения тока с некоторой способностью измерения напряжения.

Технология токоизмерительных клещей

Токоизмерительные клещи основаны на принципе магнитной индукции для бесконтактного измерения переменного тока.Электрический ток, протекающий по проводу, создает магнитное поле. С чередованием ток часто меняет полярность, он вызывает динамические колебания магнитного поля, которые пропорциональны протекающему току. Трансформатор тока внутри клещей измеряет магнитных колебаний и преобразует значение в показание переменного тока. Этот тип измерения удобен для измерения очень больших токов переменного тока.

Однако постоянный ток течет по проводникам с фиксированной полярностью.Следовательно, магнитное поле вокруг проводника не меняется и обычные токоизмерительные клещи будут регистрировать нет чтения. Токоизмерительные клещи постоянного тока работают по принципу эффекта Холла. Датчики Холла обнаруживают магнитное поле, вызванное протеканием тока, которое вызывает небольшое напряжение на датчике Холла. датчик эффекта. Затем это напряжение, пропорциональное току, усиливается и измеряется.

Токоизмерительные клещи часто включают в себя другие датчики, такие как вольтметры, омметры и т. д.которые повышают универсальность инструмента. Эти другие датчики используют измерительные провода, которые подключаются к зажимной метр. Поскольку с помощью клещей можно выполнять только измерения тока, бесконтактный характер клещей не дает преимуществ для других измерений.

Характеристики клещей

Токоизмерительные клещи часто доступны с рядом функций, упрощающих снятие точных показаний и обработку полученных данных. Конечно, токоизмерительные клещи более высокого уровня более вероятны. чтобы включить эти расширенные функции.

True RMS: Поскольку переменный ток меняет направление несколько раз в секунду, он представлен в виде синусоиды. Поскольку амплитуда синусоиды изменяется непрерывно в течение периода волны, измерения тока могут немного различаться в разные моменты времени. True-RMS (среднеквадратичное значение) преобразует сигналы переменного тока в сигналы постоянного тока с эквивалентной значение для более стабильных и точных показаний переменного тока.

Класс защиты IP : Класс защиты от проникновения классифицирует и оценивает степень защиты корпусов от проникновения влаги и посторонних предметов.Адекватно Защищенные инструменты подходят для использования в более широком диапазоне сред. Рейтинги NEMA — это еще одна широко используемая система оценки корпусов.

Интерфейс ПК: Токоизмерительные клещи все чаще включают в себя последовательные порты (интерфейсы ПК) как средство для простой передачи данных из измерителя в компьютер, где может произойти анализ или создание отчета. Общие интерфейсы включают Ethernet, USB, FireWire или RS-232. Часто также доступно программное обеспечение, помогающее систематизировать данные после их обработки. переведены на компьютер.

Регистратор данных: Внутренняя память, способная хранить ряд измеренных значений для последующего вызова.

Пусковой ток: Функция пускового тока обеспечивает пользователям точное измерение сильных бросков тока, поступающих в двигатели во время запуска. Это измерение может иметь решающее значение при устранении неполадок, таких как ложные срабатывания устройств защиты от перегрузки по току.

Отображение с автоматическим выбором диапазона: Единицы с автоматическим выбором диапазона автоматически устанавливают правильный диапазон измерения, избавляя пользователей от необходимости регулировать положение переключателя при попытке позиционирования зажим и сделайте замер.

Измерения токоизмерительными клещами

Хотя токоизмерительные клещи предназначены исключительно для измерения тока, большинство токоизмерительных клещей принимают входные данные от измерительных проводов или других пробников, что значительно увеличивает количество типов измерений. они способны и делают токоизмерительные клещи гораздо более универсальным инструментом.

  • Переменный/постоянный ток: Ток, измеряемый в амперах, представляет собой поток электрического заряда и является основным измерением клещей.Ток можно использовать для генерируют тепло, а также магнитные поля, которые широко используются в двигателях, индукторах и генераторах. Большинство современных токоизмерительных клещей могут измерять как переменный, так и постоянный ток.
  • Напряжение переменного/постоянного тока: Напряжение, измеряемое в вольтах, представляет собой разность электрических потенциалов единичного заряда, переносимого между двумя точками, или, проще говоря, как много электрической энергии доставляется, если определенное количество электронов передается через цепь. Напряжение может представлять либо источник энергии, либо используемую энергию, хранится или теряется.
  • Сопротивление: Сопротивление, измеряемое в омах, представляет собой сопротивление прохождению электрического тока через проводник. Сопротивление определяется материал и форма проводника.
  • Непрерывность: Непрерывность — это быстрый тест сопротивления «годен/не годен», который различает разомкнутую или замкнутую цепь. Как правило, проверка непрерывности выдает звуковой сигнал при обнаружении замкнутой цепи устраняет необходимость смотреть на измеритель во время выполнения теста.
  • Емкость: Емкость, измеряемая в фарадах, представляет собой способность объекта накапливать электрический заряд. Любой объект, который может быть электрически заряжен проявляет емкость.
  • Частота: Частота, измеряемая в герцах, относится к скорости, с которой происходят колебания переменного тока в электрической сети. Как правило, мощность системы в Северной Америке используют частоту 60 Гц.
  • Коэффициент мощности: Коэффициент мощности — это расширенное измерение, определяемое как отношение реальной мощности, поступающей на нагрузку, к полной мощности в цепи. В В электрической системе нагрузка с низким коэффициентом мощности потребляет больше тока, чем нагрузка с высоким коэффициентом мощности при том же количестве передаваемой полезной мощности.
  • Температура: Многие токоизмерительные клещи принимают входные данные от датчиков температуры или термопар для контактного измерения температуры.

На что обратить внимание при выборе клещей

  • Какие измерения и диапазоны необходимы?
  • Важны ли размеры губок для вашего применения?
  • Нужна ли измерительному прибору защита от грязи и влаги (степени защиты IP или NEMA)?
  • Какое разрешение и точность требуются?
  • Какие принадлежности (измерительные провода, зонды и т. д.)) необходимы?
  • Имеет ли токоизмерительные клещи правильный класс безопасности для выполняемой вами работы?

Если у вас есть какие-либо вопросы относительно токоизмерительных клещей, не стесняйтесь обращаться к одному из наших инженеров по электронной почте [email protected] com или по телефону 1-800-884-4967.

Как пользоваться токоизмерительными клещами

Готов учиться? Советы по использованию токоизмерительных клещей, соответствующие меры предосторожности и многое другое

Обзор

Для измерения таких параметров, как ток и напряжение, вам понадобится специальный прибор.Такие приборы, как аналоговые мультиметры и цифровые мультиметры, часто используются для измерения тока, но они требуют размыкания цепи, чтобы измерительные выводы прибора можно было вставить в цепь последовательно. Во многих случаях это невозможно или практически невозможно сделать. Размыкание цепи также сопряжено с риском, например, поражения электрическим током.

Токоизмерительные клещи удобны в таких ситуациях. Эта страница предлагает подробное объяснение того, как использовать токоизмерительные клещи, а также соответствующие меры предосторожности.

Что такое токоизмерительные клещи?

Токоизмерительные клещи представляют собой прибор в форме прищепки, который можно закрепить на проводе под напряжением для измерения протекающего по нему тока. В качестве принципа измерения токоизмерительные клещи обнаруживают магнитное поле, создаваемое током, протекающим по проводу, для измерения значения тока.

В отличие от таких приборов, как мультиметры, эта конструкция имеет то преимущество, что позволяет измерять ток, не требуя разрыва измеряемой цепи. Вообще говоря, существует два типа токоизмерительных клещей:

  • Модели, предназначенные для измерения тока нагрузки
  • Модели, предназначенные для измерения тока утечки

Приборы можно дополнительно классифицировать на основе других различий, например, измеряют ли они постоянный ток (DC). ) или переменного тока (AC), а также используют ли они выпрямление по среднему значению или метод среднеквадратичного значения.Модели тока нагрузки используются для измерения обычных цепей переменного тока. Некоторые последние модели токоизмерительных клещей могут измерять как ток нагрузки, так и ток утечки.

Основной метод использования токоизмерительных клещей

В этом разделе представлено простое для понимания введение в использование токоизмерительных клещей для измерения тока нагрузки и тока утечки.

Информация, относящаяся к обоим типам

Вообще говоря, клещи для измерения тока нагрузки и тока утечки используются одинаково. Во-первых, если ваши токоизмерительные клещи позволяют вам выбирать постоянный или переменный ток, выберите тип тока, подходящий для цепи, которую вы хотите измерить.Затем установите диапазон измерения в зависимости от величины измеряемого тока. При измерении постоянного тока не забудьте выполнить настройку нуля.

Когда вы будете готовы, откройте зажимы токоизмерительных клещей и зажмите ими провод, который вы хотите измерить. Расположите провод в центре зажима для максимальной точности измерения.

  • Положение провода в центре зажима (рекомендуется)

  • Положение провода вне центра зажима (не рекомендуется)

Использование токоизмерительных клещей

Зажим счетчики, предназначенные для измерения токов нагрузки, могут быть закреплены только на одном проводе.Будьте осторожны, чтобы не зажать прибор вокруг нескольких проводов одновременно, так как это помешает правильному измерению.

Использование клещей для измерения тока утечки

Токоизмерительные клещи, предназначенные для измерения токов утечки, требуют большей осторожности. Провода заземления следует измерять отдельно. При измерении цепи переменного тока закрепите прибор вокруг всех проводов (двух, если они однофазные, и трех, если трехфазные).

При измерении тока утечки два провода могут быть зажаты одновременно.

Ток утечки — это ток, который течет на землю через сопротивление изоляции нагрузки, и может составлять несколько десятков мкА, если подключено много нагрузок. С помощью токоизмерительных клещей можно определить мельчайшую разницу, протекающую в обоих направлениях, и идентифицировать ее как ток утечки.

Чего следует избегать

Как и в случае с аналоговыми и цифровыми мультиметрами, при использовании токоизмерительных клещей необходимо помнить о некоторых мерах предосторожности. Например, если вы оставите клещевой измеритель мощности подключенным после использования, слишком большой ток, протекающий через клещевой датчик, может повредить прибор.

Кроме того, избегайте зажима прибора на оголенном проводнике; токоизмерительные клещи следует использовать только для измерения изолированных проводников (хотя это зависит от конкретного используемого датчика тока).

Токоизмерительные клещи обеспечивают высокий уровень безопасности, поскольку они не требуют обрезания измеряемого провода, но важно использовать их при максимальном номинальном напряжении между клеммами и землей или ниже него. Наконец, барьер инструмента указывает на предел безопасности, поэтому никогда не прикасайтесь ни к чему со стороны челюсти барьера во время использования инструмента.

Выбор лучших токоизмерительных клещей

Как описано выше, токоизмерительные клещи доступны в различных моделях, которые предназначены для различных применений, например, в зависимости от того, предназначены ли они для измерения постоянного или переменного тока. Следовательно, необходимо выбирать инструмент в зависимости от предполагаемого применения. Например, для измерения аккумулятора, используемого в автомобиле, источнике бесперебойного питания (ИБП) или фотогальваническом элементе, вам понадобятся токоизмерительные клещи, способные измерять постоянный ток.

С другой стороны, если вы хотите измерить ток нагрузки или ток утечки в цепи переменного тока, такой как освещение или линии электропередач в доме, здании или на заводе, вам понадобятся токоизмерительные клещи переменного тока. Выберите токоизмерительные клещи переменного тока нагрузки для обычных измерений или токоизмерительные клещи для измерения тока утечки, если вам необходимо измерить токи утечки, вызванные дефектами изоляции или током, протекающим в заземляющем проводе электрического оборудования.

Безопасное использование токоизмерительных клещей

Токоизмерительные клещи — это удобные приборы, которые могут измерять ток и другие параметры, просто зажимая провод, который не нужно обрезать.Их легко использовать безопасно, так как для этого требуется только зажать инструмент вокруг провода. Однако эти инструменты могут быть опасны при неправильном использовании. Следовательно, обязательно ознакомьтесь с инструкциями и мерами предосторожности в этой статье, касающимися выбора и использования токоизмерительных клещей, чтобы обеспечить безопасное использование.

короткие видео